Cargando…

Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque

The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque...

Descripción completa

Detalles Bibliográficos
Autores principales: Pal, Banabir, Hazra, Binoy K., Göbel, Börge, Jeon, Jae-Chun, Pandeya, Avanindra K., Chakraborty, Anirban, Busch, Oliver, Srivastava, Abhay K., Deniz, Hakan, Taylor, James M., Meyerheim, Holger, Mertig, Ingrid, Yang, See-Hun, Parkin, Stuart S. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200275/
https://www.ncbi.nlm.nih.gov/pubmed/35704587
http://dx.doi.org/10.1126/sciadv.abo5930
_version_ 1784728023985029120
author Pal, Banabir
Hazra, Binoy K.
Göbel, Börge
Jeon, Jae-Chun
Pandeya, Avanindra K.
Chakraborty, Anirban
Busch, Oliver
Srivastava, Abhay K.
Deniz, Hakan
Taylor, James M.
Meyerheim, Holger
Mertig, Ingrid
Yang, See-Hun
Parkin, Stuart S. P.
author_facet Pal, Banabir
Hazra, Binoy K.
Göbel, Börge
Jeon, Jae-Chun
Pandeya, Avanindra K.
Chakraborty, Anirban
Busch, Oliver
Srivastava, Abhay K.
Deniz, Hakan
Taylor, James M.
Meyerheim, Holger
Mertig, Ingrid
Yang, See-Hun
Parkin, Stuart S. P.
author_sort Pal, Banabir
collection PubMed
description The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque (SSOT) by which current can set the magnetic states of even thick layers of the chiral kagome antiferromagnet Mn(3)Sn. The mechanism involves setting the orientation of the antiferromagnetic domains in a thin region at the interface with spin currents arising from an adjacent heavy metal while also heating the layer above its magnetic ordering temperature. This interface region seeds the resulting spin texture of the entire layer as it cools down and, thereby, overcomes the thickness limitation of conventional spin-orbit torques. SSOT switching in Mn(3)Sn can be extended beyond chiral antiferromagnets to diverse magnetic systems and provides a path toward the development of highly efficient, high-speed, and thermally stable spintronic devices.
format Online
Article
Text
id pubmed-9200275
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-92002752022-06-27 Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque Pal, Banabir Hazra, Binoy K. Göbel, Börge Jeon, Jae-Chun Pandeya, Avanindra K. Chakraborty, Anirban Busch, Oliver Srivastava, Abhay K. Deniz, Hakan Taylor, James M. Meyerheim, Holger Mertig, Ingrid Yang, See-Hun Parkin, Stuart S. P. Sci Adv Physical and Materials Sciences The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque (SSOT) by which current can set the magnetic states of even thick layers of the chiral kagome antiferromagnet Mn(3)Sn. The mechanism involves setting the orientation of the antiferromagnetic domains in a thin region at the interface with spin currents arising from an adjacent heavy metal while also heating the layer above its magnetic ordering temperature. This interface region seeds the resulting spin texture of the entire layer as it cools down and, thereby, overcomes the thickness limitation of conventional spin-orbit torques. SSOT switching in Mn(3)Sn can be extended beyond chiral antiferromagnets to diverse magnetic systems and provides a path toward the development of highly efficient, high-speed, and thermally stable spintronic devices. American Association for the Advancement of Science 2022-06-15 /pmc/articles/PMC9200275/ /pubmed/35704587 http://dx.doi.org/10.1126/sciadv.abo5930 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Pal, Banabir
Hazra, Binoy K.
Göbel, Börge
Jeon, Jae-Chun
Pandeya, Avanindra K.
Chakraborty, Anirban
Busch, Oliver
Srivastava, Abhay K.
Deniz, Hakan
Taylor, James M.
Meyerheim, Holger
Mertig, Ingrid
Yang, See-Hun
Parkin, Stuart S. P.
Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title_full Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title_fullStr Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title_full_unstemmed Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title_short Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
title_sort setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200275/
https://www.ncbi.nlm.nih.gov/pubmed/35704587
http://dx.doi.org/10.1126/sciadv.abo5930
work_keys_str_mv AT palbanabir settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT hazrabinoyk settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT gobelborge settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT jeonjaechun settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT pandeyaavanindrak settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT chakrabortyanirban settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT buscholiver settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT srivastavaabhayk settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT denizhakan settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT taylorjamesm settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT meyerheimholger settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT mertigingrid settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT yangseehun settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque
AT parkinstuartsp settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque