Cargando…
Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque
The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200275/ https://www.ncbi.nlm.nih.gov/pubmed/35704587 http://dx.doi.org/10.1126/sciadv.abo5930 |
_version_ | 1784728023985029120 |
---|---|
author | Pal, Banabir Hazra, Binoy K. Göbel, Börge Jeon, Jae-Chun Pandeya, Avanindra K. Chakraborty, Anirban Busch, Oliver Srivastava, Abhay K. Deniz, Hakan Taylor, James M. Meyerheim, Holger Mertig, Ingrid Yang, See-Hun Parkin, Stuart S. P. |
author_facet | Pal, Banabir Hazra, Binoy K. Göbel, Börge Jeon, Jae-Chun Pandeya, Avanindra K. Chakraborty, Anirban Busch, Oliver Srivastava, Abhay K. Deniz, Hakan Taylor, James M. Meyerheim, Holger Mertig, Ingrid Yang, See-Hun Parkin, Stuart S. P. |
author_sort | Pal, Banabir |
collection | PubMed |
description | The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque (SSOT) by which current can set the magnetic states of even thick layers of the chiral kagome antiferromagnet Mn(3)Sn. The mechanism involves setting the orientation of the antiferromagnetic domains in a thin region at the interface with spin currents arising from an adjacent heavy metal while also heating the layer above its magnetic ordering temperature. This interface region seeds the resulting spin texture of the entire layer as it cools down and, thereby, overcomes the thickness limitation of conventional spin-orbit torques. SSOT switching in Mn(3)Sn can be extended beyond chiral antiferromagnets to diverse magnetic systems and provides a path toward the development of highly efficient, high-speed, and thermally stable spintronic devices. |
format | Online Article Text |
id | pubmed-9200275 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92002752022-06-27 Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque Pal, Banabir Hazra, Binoy K. Göbel, Börge Jeon, Jae-Chun Pandeya, Avanindra K. Chakraborty, Anirban Busch, Oliver Srivastava, Abhay K. Deniz, Hakan Taylor, James M. Meyerheim, Holger Mertig, Ingrid Yang, See-Hun Parkin, Stuart S. P. Sci Adv Physical and Materials Sciences The current-induced spin-orbit torque switching of ferromagnets has had huge impact in spintronics. However, short spin-diffusion lengths limit the thickness of switchable ferromagnetic layers, thereby limiting their thermal stability. Here, we report a previously unobserved seeded spin-orbit torque (SSOT) by which current can set the magnetic states of even thick layers of the chiral kagome antiferromagnet Mn(3)Sn. The mechanism involves setting the orientation of the antiferromagnetic domains in a thin region at the interface with spin currents arising from an adjacent heavy metal while also heating the layer above its magnetic ordering temperature. This interface region seeds the resulting spin texture of the entire layer as it cools down and, thereby, overcomes the thickness limitation of conventional spin-orbit torques. SSOT switching in Mn(3)Sn can be extended beyond chiral antiferromagnets to diverse magnetic systems and provides a path toward the development of highly efficient, high-speed, and thermally stable spintronic devices. American Association for the Advancement of Science 2022-06-15 /pmc/articles/PMC9200275/ /pubmed/35704587 http://dx.doi.org/10.1126/sciadv.abo5930 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Pal, Banabir Hazra, Binoy K. Göbel, Börge Jeon, Jae-Chun Pandeya, Avanindra K. Chakraborty, Anirban Busch, Oliver Srivastava, Abhay K. Deniz, Hakan Taylor, James M. Meyerheim, Holger Mertig, Ingrid Yang, See-Hun Parkin, Stuart S. P. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title | Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title_full | Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title_fullStr | Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title_full_unstemmed | Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title_short | Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
title_sort | setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200275/ https://www.ncbi.nlm.nih.gov/pubmed/35704587 http://dx.doi.org/10.1126/sciadv.abo5930 |
work_keys_str_mv | AT palbanabir settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT hazrabinoyk settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT gobelborge settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT jeonjaechun settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT pandeyaavanindrak settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT chakrabortyanirban settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT buscholiver settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT srivastavaabhayk settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT denizhakan settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT taylorjamesm settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT meyerheimholger settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT mertigingrid settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT yangseehun settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque AT parkinstuartsp settingofthemagneticstructureofchiralkagomeantiferromagnetsbyaseededspinorbittorque |