Cargando…

EagleC: A deep-learning framework for detecting a full range of structural variations from bulk and single-cell contact maps

The Hi-C technique has been shown to be a promising method to detect structural variations (SVs) in human genomes. However, algorithms that can use Hi-C data for a full-range SV detection have been severely lacking. Current methods can only identify interchromosomal translocations and long-range int...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xiaotao, Luan, Yu, Yue, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200291/
https://www.ncbi.nlm.nih.gov/pubmed/35704579
http://dx.doi.org/10.1126/sciadv.abn9215
Descripción
Sumario:The Hi-C technique has been shown to be a promising method to detect structural variations (SVs) in human genomes. However, algorithms that can use Hi-C data for a full-range SV detection have been severely lacking. Current methods can only identify interchromosomal translocations and long-range intrachromosomal SVs (>1 Mb) at less-than-optimal resolution. Therefore, we develop EagleC, a framework that combines deep-learning and ensemble-learning strategies to predict a full range of SVs at high resolution. We show that EagleC can uniquely capture a set of fusion genes that are missed by whole-genome sequencing or nanopore. Furthermore, EagleC also effectively captures SVs in other chromatin interaction platforms, such as HiChIP, Chromatin interaction analysis with paired-end tag sequencing (ChIA-PET), and capture Hi-C. We apply EagleC in more than 100 cancer cell lines and primary tumors and identify a valuable set of high-quality SVs. Last, we demonstrate that EagleC can be applied to single-cell Hi-C and used to study the SV heterogeneity in primary tumors.