Cargando…
Addressing delayed case reporting in infectious disease forecast modeling
Infectious disease forecasting is of great interest to the public health community and policymakers, since forecasts can provide insight into disease dynamics in the near future and inform interventions. Due to delays in case reporting, however, forecasting models may often underestimate the current...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200328/ https://www.ncbi.nlm.nih.gov/pubmed/35658007 http://dx.doi.org/10.1371/journal.pcbi.1010115 |
_version_ | 1784728037198135296 |
---|---|
author | Beesley, Lauren J. Osthus, Dave Del Valle, Sara Y. |
author_facet | Beesley, Lauren J. Osthus, Dave Del Valle, Sara Y. |
author_sort | Beesley, Lauren J. |
collection | PubMed |
description | Infectious disease forecasting is of great interest to the public health community and policymakers, since forecasts can provide insight into disease dynamics in the near future and inform interventions. Due to delays in case reporting, however, forecasting models may often underestimate the current and future disease burden. In this paper, we propose a general framework for addressing reporting delay in disease forecasting efforts with the goal of improving forecasts. We propose strategies for leveraging either historical data on case reporting or external internet-based data to estimate the amount of reporting error. We then describe several approaches for adapting general forecasting pipelines to account for under- or over-reporting of cases. We apply these methods to address reporting delay in data on dengue fever cases in Puerto Rico from 1990 to 2009 and to reports of influenza-like illness (ILI) in the United States between 2010 and 2019. Through a simulation study, we compare method performance and evaluate robustness to assumption violations. Our results show that forecasting accuracy and prediction coverage almost always increase when correction methods are implemented to address reporting delay. Some of these methods required knowledge about the reporting error or high quality external data, which may not always be available. Provided alternatives include excluding recently-reported data and performing sensitivity analysis. This work provides intuition and guidance for handling delay in disease case reporting and may serve as a useful resource to inform practical infectious disease forecasting efforts. |
format | Online Article Text |
id | pubmed-9200328 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92003282022-06-16 Addressing delayed case reporting in infectious disease forecast modeling Beesley, Lauren J. Osthus, Dave Del Valle, Sara Y. PLoS Comput Biol Research Article Infectious disease forecasting is of great interest to the public health community and policymakers, since forecasts can provide insight into disease dynamics in the near future and inform interventions. Due to delays in case reporting, however, forecasting models may often underestimate the current and future disease burden. In this paper, we propose a general framework for addressing reporting delay in disease forecasting efforts with the goal of improving forecasts. We propose strategies for leveraging either historical data on case reporting or external internet-based data to estimate the amount of reporting error. We then describe several approaches for adapting general forecasting pipelines to account for under- or over-reporting of cases. We apply these methods to address reporting delay in data on dengue fever cases in Puerto Rico from 1990 to 2009 and to reports of influenza-like illness (ILI) in the United States between 2010 and 2019. Through a simulation study, we compare method performance and evaluate robustness to assumption violations. Our results show that forecasting accuracy and prediction coverage almost always increase when correction methods are implemented to address reporting delay. Some of these methods required knowledge about the reporting error or high quality external data, which may not always be available. Provided alternatives include excluding recently-reported data and performing sensitivity analysis. This work provides intuition and guidance for handling delay in disease case reporting and may serve as a useful resource to inform practical infectious disease forecasting efforts. Public Library of Science 2022-06-03 /pmc/articles/PMC9200328/ /pubmed/35658007 http://dx.doi.org/10.1371/journal.pcbi.1010115 Text en © 2022 Beesley et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Beesley, Lauren J. Osthus, Dave Del Valle, Sara Y. Addressing delayed case reporting in infectious disease forecast modeling |
title | Addressing delayed case reporting in infectious disease forecast modeling |
title_full | Addressing delayed case reporting in infectious disease forecast modeling |
title_fullStr | Addressing delayed case reporting in infectious disease forecast modeling |
title_full_unstemmed | Addressing delayed case reporting in infectious disease forecast modeling |
title_short | Addressing delayed case reporting in infectious disease forecast modeling |
title_sort | addressing delayed case reporting in infectious disease forecast modeling |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200328/ https://www.ncbi.nlm.nih.gov/pubmed/35658007 http://dx.doi.org/10.1371/journal.pcbi.1010115 |
work_keys_str_mv | AT beesleylaurenj addressingdelayedcasereportingininfectiousdiseaseforecastmodeling AT osthusdave addressingdelayedcasereportingininfectiousdiseaseforecastmodeling AT delvallesaray addressingdelayedcasereportingininfectiousdiseaseforecastmodeling |