Cargando…
A Decisive Metaheuristic Attribute Selector Enabled Combined Unsupervised-Supervised Model for Chronic Disease Risk Assessment
Advanced predictive analytics coupled with an effective attribute selection method plays a pivotal role in the precise assessment of chronic disorder risks in patients. Traditional attribute selection approaches suffer from premature convergence, high complexity, and computational cost. On the contr...
Autores principales: | Mishra, Sushruta, Thakkar, Hiren Kumar, Singh, Priyanka, Sharma, Gajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200507/ https://www.ncbi.nlm.nih.gov/pubmed/35720925 http://dx.doi.org/10.1155/2022/8749353 |
Ejemplares similares
-
Clairvoyant: AdaBoost with Cost-Enabled Cost-Sensitive Classifier for Customer Churn Prediction
por: Thakkar, Hiren Kumar, et al.
Publicado: (2022) -
An Explainable Intelligence Driven Query Prioritization Using Balanced Decision Tree Approach for Multi-Level Psychological Disorders Assessment
por: Mishra, Sushruta, et al.
Publicado: (2021) -
Metaheuristics computer decision-making
por: Resende, Mauricio G C, et al.
Publicado: (2004) -
Selectors
por: Jayne, John E, et al.
Publicado: (2001) -
Combining Supervised and Unsupervised Learning Algorithms for Human Activity Recognition
por: Budisteanu, Elena-Alexandra, et al.
Publicado: (2021)