Cargando…
Stochastic Stability Analysis for Stochastic Coupled Oscillator Networks with Bidirectional Cross-Dispersal
It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on SCON with bidirectional cross-dispersal (SCONBC). This paper intends to study stochastic stability for SCONBC. A new and suitable Lyapunov function for SCONBC is constructed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200509/ https://www.ncbi.nlm.nih.gov/pubmed/35720899 http://dx.doi.org/10.1155/2022/2742414 |
Sumario: | It is well known that stochastic coupled oscillator network (SCON) has been widely applied; however, there are few studies on SCON with bidirectional cross-dispersal (SCONBC). This paper intends to study stochastic stability for SCONBC. A new and suitable Lyapunov function for SCONBC is constructed on the basis of Kirchhoff's matrix tree theorem in graph theory. Combining stochastic analysis skills and Lyapunov method, a sufficient criterion guaranteeing stochastic stability for the trivial solution of SCONBC is provided, which is associated with topological structure and coupling strength of SCONBC. Furthermore, some numerical simulation examples are given in order to illustrate the validity and practicability of our results. |
---|