Cargando…

Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats

Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sur, Bongjun, Lee, Bombi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200513/
https://www.ncbi.nlm.nih.gov/pubmed/35722162
http://dx.doi.org/10.1155/2022/8320256
_version_ 1784728076766150656
author Sur, Bongjun
Lee, Bombi
author_facet Sur, Bongjun
Lee, Bombi
author_sort Sur, Bongjun
collection PubMed
description Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD.
format Online
Article
Text
id pubmed-9200513
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-92005132022-06-16 Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats Sur, Bongjun Lee, Bombi Evid Based Complement Alternat Med Research Article Posttraumatic stress disorder (PTSD) is a stress-related psychiatric or mental disorder characterized by experiencing a traumatic stress. The cause of such PTSD is dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and imbalance of monoamines. Myricetin (MYR) is a common natural flavonoid that has various pharmacological activities. We investigated the effects of MYR on fear, depression, and anxiety following monoamine imbalance and hyperactivation of HPA axis in rats exposed to a single prolonged stress (SPS). Male rats were dosed with MYR (10 and 20 mg/kg, i.p.) once daily for 14 days after exposure to SPS. Administration of MYR reduced freezing responses to extinction recall, depression, and anxiety-like behaviors and decreased increase of plasma corticosterone and adrenocorticotropic hormone levels. Also, administration of MYR restored decreased serotonin and increased norepinephrine in the fear circuit regions, medial prefrontal cortex, and hippocampus. It also increased the reduction in the brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B mRNA expression and the ratio of p-ERK/extracellular signal-regulated kinase (ERK) in the hippocampus. Thus, MYR exerted antidepressant and anxiolytic effects by regulation of HPA axis and activation of the BDNF-ERK signaling pathway. Finally, we suggest that MYR could be a useful therapeutic agent to prevent traumatic stress such as PTSD. Hindawi 2022-06-08 /pmc/articles/PMC9200513/ /pubmed/35722162 http://dx.doi.org/10.1155/2022/8320256 Text en Copyright © 2022 Bongjun Sur and Bombi Lee. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sur, Bongjun
Lee, Bombi
Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title_full Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title_fullStr Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title_full_unstemmed Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title_short Myricetin Inhibited Fear and Anxiety-Like Behaviors by HPA Axis Regulation and Activation of the BDNF-ERK Signaling Pathway in Posttraumatic Stress Disorder Rats
title_sort myricetin inhibited fear and anxiety-like behaviors by hpa axis regulation and activation of the bdnf-erk signaling pathway in posttraumatic stress disorder rats
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200513/
https://www.ncbi.nlm.nih.gov/pubmed/35722162
http://dx.doi.org/10.1155/2022/8320256
work_keys_str_mv AT surbongjun myricetininhibitedfearandanxietylikebehaviorsbyhpaaxisregulationandactivationofthebdnferksignalingpathwayinposttraumaticstressdisorderrats
AT leebombi myricetininhibitedfearandanxietylikebehaviorsbyhpaaxisregulationandactivationofthebdnferksignalingpathwayinposttraumaticstressdisorderrats