Cargando…
XNOR-Nets with SETs: Proposal for a binarised convolution processing elements with Single-Electron Transistors
Deep neural network (DNN) and Convolution neural network (CNN) algorithms have significantly increased the accuracies in cutting-edge large-scale image recognition and natural-language processing tasks. Generally, such neural nets are implemented on power-hungry GPUs, beyond the reach of low-power e...
Autor principal: | Bheemireddy, Varun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200707/ https://www.ncbi.nlm.nih.gov/pubmed/35705581 http://dx.doi.org/10.1038/s41598-022-13180-7 |
Ejemplares similares
-
Frequency-domain ultrafast passive logic: NOT and XNOR gates
por: Maram, Reza, et al.
Publicado: (2020) -
Accounting for the complex hierarchical topology of EEG phase-based functional connectivity in network binarisation
por: Smith, Keith, et al.
Publicado: (2017) -
Accurate Image Analysis of the Retina Using Hessian Matrix and Binarisation of Thresholded Entropy with Application of Texture Mapping
por: Yin, Xiaoxia, et al.
Publicado: (2014) -
Choroidal thickness estimation from colour fundus photographs by adaptive binarisation and deep learning, according to central serous chorioretinopathy status
por: Komuku, Yuki, et al.
Publicado: (2020) -
Molecular floating-gate single-electron transistor
por: Yamamoto, Makoto, et al.
Publicado: (2017)