Cargando…
Usability of deep learning and H&E images predict disease outcome-emerging tool to optimize clinical trials
Understanding factors that impact prognosis for cancer patients have high clinical relevance for treatment decisions and monitoring of the disease outcome. Advances in artificial intelligence (AI) and digital pathology offer an exciting opportunity to capitalize on the use of whole slide images (WSI...
Autores principales: | Qaiser, Talha, Lee, Ching-Yi, Vandenberghe, Michel, Yeh, Joe, Gavrielides, Marios A., Hipp, Jason, Scott, Marietta, Reischl, Joachim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200764/ https://www.ncbi.nlm.nih.gov/pubmed/35705792 http://dx.doi.org/10.1038/s41698-022-00275-7 |
Ejemplares similares
-
Relevance of deep learning to facilitate the diagnosis of HER2 status in breast cancer
por: Vandenberghe, Michel E., et al.
Publicado: (2017) -
Usability: turning technologies into tools
por: Adler, Paul S, et al.
Publicado: (1992) -
KaIDA: a modular tool for assisting image annotation in deep learning
por: Schilling, Marcel P., et al.
Publicado: (2022) -
Usability Testing of a Complex Clinical Decision Support Tool in the Emergency Department: Lessons Learned
por: Press, Anne, et al.
Publicado: (2015) -
Sensor Data Fusion Based on Deep Learning for Computer Vision Applications and Medical Applications
por: Naqvi, Rizwan Ali, et al.
Publicado: (2022)