Cargando…
Cell type matching in single-cell RNA-sequencing data using FR-Match
Reference cell atlases powered by single cell and spatial transcriptomics technologies are becoming available to study healthy and diseased tissue at single cell resolution. One important use of these data resources is to compare cell types from new dataset with cell types in the reference atlases t...
Autores principales: | Zhang, Yun, Aevermann, Brian, Gala, Rohan, Scheuermann, Richard H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200772/ https://www.ncbi.nlm.nih.gov/pubmed/35705694 http://dx.doi.org/10.1038/s41598-022-14192-z |
Ejemplares similares
-
FR-Match: robust matching of cell type clusters from single cell RNA sequencing data using the Friedman–Rafsky non-parametric test
por: Zhang, Yun, et al.
Publicado: (2020) -
Machine learning for cell type classification from single nucleus RNA sequencing data
por: Le, Huy, et al.
Publicado: (2022) -
Single-nucleus and single-cell transcriptomes compared in matched cortical cell types
por: Bakken, Trygve E., et al.
Publicado: (2018) -
A machine learning method for the discovery of minimum marker gene combinations for cell type identification from single-cell RNA sequencing
por: Aevermann, Brian, et al.
Publicado: (2021) -
Reference-based cell type matching of in situ image-based spatial transcriptomics data on primary visual cortex of mouse brain
por: Zhang, Yun, et al.
Publicado: (2023)