Cargando…

Plant tissue characteristics of Miscanthus x giganteus

As part of a study identifying relationships between environmental variables and insect distributions within a bioenergy crop, giant miscanthus (Miscanthus x giganteus) samples were collected in October 2016 at 33 locations within a field in southeast Georgia, USA. At each location, one plant sample...

Descripción completa

Detalles Bibliográficos
Autores principales: Pisani, Oliva, Liebert, Dan, Strickland, Timothy C., Coffin, Alisa W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200790/
http://dx.doi.org/10.1038/s41597-022-01424-0
Descripción
Sumario:As part of a study identifying relationships between environmental variables and insect distributions within a bioenergy crop, giant miscanthus (Miscanthus x giganteus) samples were collected in October 2016 at 33 locations within a field in southeast Georgia, USA. At each location, one plant sample was collected every 3 to 4 m along a 15 m transect, resulting in 5 replicates per sampling location. The plant samples were separated into leaves and stems, dried, and ground. The chemical composition of the ground material was assessed by measuring total carbon and nitrogen, total macro- and micronutrients (aluminum, arsenic, boron, calcium, cadmium, cobalt, chromium, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorus, lead, sulfur, selenium, silicon, titanium, vanadium, and zinc) using Inductively Coupled Plasma with Optical Emission Spectroscopy (ICP-OES), and optical characteristics of the water extractable organic matter (WEOM) using UV-Visible and Fluorescence Excitation Emission Matrix (EEM) spectroscopy. This dataset will be useful to identify relationships between the chemical composition of giant miscanthus tissues and pest distributions within a bioenergy crop field.