Cargando…
Machine learning/molecular dynamic protein structure prediction approach to investigate the protein conformational ensemble
Proteins exist in several different conformations. These structural changes are often associated with fluctuations at the residue level. Recent findings show that co-evolutionary analysis coupled with machine-learning techniques improves the precision by providing quantitative distance predictions b...
Autores principales: | Audagnotto, Martina, Czechtizky, Werngard, De Maria, Leonardo, Käck, Helena, Papoian, Garegin, Tornberg, Lars, Tyrchan, Christian, Ulander, Johan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200820/ https://www.ncbi.nlm.nih.gov/pubmed/35705565 http://dx.doi.org/10.1038/s41598-022-13714-z |
Ejemplares similares
-
Transformer-based molecular optimization beyond matched molecular pairs
por: He, Jiazhen, et al.
Publicado: (2022) -
Molecular optimization by capturing chemist’s intuition using deep neural networks
por: He, Jiazhen, et al.
Publicado: (2021) -
Machine Learning Generation of Dynamic Protein Conformational Ensembles
por: Zheng, Li-E, et al.
Publicado: (2023) -
Direct generation of protein conformational ensembles via machine learning
por: Janson, Giacomo, et al.
Publicado: (2023) -
DNA Exit Ramps Are Revealed in the Binding Landscapes Obtained from Simulations in Helical Coordinates
por: Echeverria, Ignacia, et al.
Publicado: (2015)