Cargando…
Towards interpretable, medically grounded, EMR-based risk prediction models
Machine-learning based risk prediction models have the potential to improve patient outcomes by assessing risk more accurately than clinicians. Significant additional value lies in these models providing feedback about the factors that amplify an individual patient’s risk. Identification of risk fac...
Autores principales: | Twick, Isabell, Zahavi, Guy, Benvenisti, Haggai, Rubinstein, Ronya, Woods, Michael S., Berkenstadt, Haim, Nissan, Aviram, Hosgor, Enes, Assaf, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200841/ https://www.ncbi.nlm.nih.gov/pubmed/35705550 http://dx.doi.org/10.1038/s41598-022-13504-7 |
Ejemplares similares
-
A Practical Approach to Predicting Surgical Site Infection Risk Among Patients Before Leaving the Operating Room
por: Woods, Michael S, et al.
Publicado: (2023) -
Author Correction: Automation of surgical skill assessment using a three-stage machine learning algorithm
por: Lavanchy, Joël L., et al.
Publicado: (2021) -
Automation of surgical skill assessment using a three-stage machine learning algorithm
por: Lavanchy, Joël L., et al.
Publicado: (2021) -
Respiratory complications during recovery from gastrointestinal endoscopies performed by gastroenterologists under moderate sedation
por: Pozin, Inna Eidelman, et al.
Publicado: (2023) -
EMR in Eye Units
por: Camburu, Georgiana, et al.
Publicado: (2020)