Cargando…

An integrative pan-cancer analysis of molecular characteristics and oncogenic role of mitochondrial creatine kinase 1A (CKMT1A) in human tumors

In recent years, several studies have suggested that mitochondrial creatine kinase 1A (CKMT1A) plays a key role in various cancer types. However, there is still a lack of systematic understanding of the contribution of CKMT1A in different types of cancer. Therefore, this study aims to explore the po...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Mengjie, Liu, Shuna, Xiong, Yue, Zhao, Jingxin, Deng, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200842/
https://www.ncbi.nlm.nih.gov/pubmed/35705641
http://dx.doi.org/10.1038/s41598-022-14346-z
Descripción
Sumario:In recent years, several studies have suggested that mitochondrial creatine kinase 1A (CKMT1A) plays a key role in various cancer types. However, there is still a lack of systematic understanding of the contribution of CKMT1A in different types of cancer. Therefore, this study aims to explore the potential role of CKMT1A in human tumors. Firstly, we evaluated the expression level of CKMT1A in 33 types of tumors. Secondly, we used the GEPIA2 and Kaplan–Meier plotter to explore the relationship between CKMT1A expression and survival prognosis. Furthermore, the genetic alterations of CKMT1A were analyzed by the cBioPortal web. In addition, we performed immune infiltration analysis and gene enrichment pathway analysis. CKMT1A was highly expressed in most types of cancers and there was a significant correlation between CKMT1A expression and the prognosis of patients for certain tumors. Non-Small Cell Lung Cancer cases with altered CKMT1A showed a poorer overall survival. CKMT1A expression was negatively correlated with the infiltration of cancer-associated fibroblasts in most tumors. We also found that its expression was negatively associated with CD8(+) T-cell infiltration in several tumors. Furthermore, enrichment analysis revealed that “Glycolysis/ Gluconeogenesis” and “metabolic pathways” functions were involved in the functional mechanism of CKMT1A. Taken together, our studies will provide a relatively clear and integrative understanding of the role of CKMT1A across different tumors. All these findings will lay a solid foundation for further molecular assays of CKMT1A in tumorigenesis and provide the rationale for developing novel therapeutic strategies.