Cargando…
Deep Learning in Neuroimaging: Overcoming Challenges With Emerging Approaches
Deep learning (DL) is of great interest in psychiatry due its potential yet largely untapped ability to utilize multidimensional datasets (such as fMRI data) to predict clinical outcomes. Typical DL methods, however, have strong assumptions, such as large datasets and underlying model opaqueness, th...
Autores principales: | Smucny, Jason, Shi, Ge, Davidson, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200984/ https://www.ncbi.nlm.nih.gov/pubmed/35722548 http://dx.doi.org/10.3389/fpsyt.2022.912600 |
Ejemplares similares
-
Data augmentation with Mixup: Enhancing performance of a functional neuroimaging-based prognostic deep learning classifier in recent onset psychosis
por: Smucny, Jason, et al.
Publicado: (2022) -
Comparing machine and deep learning‐based algorithms for prediction of clinical improvement in psychosis with functional magnetic resonance imaging
por: Smucny, Jason, et al.
Publicado: (2020) -
Could Vagus Nerve Stimulation Target Hippocampal Hyperactivity to Improve Cognition in Schizophrenia?
por: Smucny, Jason, et al.
Publicado: (2015) -
Neuroimaging Studies of Antidepressant Placebo Effects: Challenges and Opportunities
por: Brown, Vanessa, et al.
Publicado: (2019) -
Clinical Utility of Machine-Learning Approaches in Schizophrenia: Improving Diagnostic Confidence for Translational Neuroimaging
por: Iwabuchi, Sarina J., et al.
Publicado: (2013)