Cargando…
Emerging artificial intelligence applications in Spatial Transcriptomics analysis
Spatial transcriptomics (ST) has advanced significantly in the last few years. Such advancement comes with the urgent need for novel computational methods to handle the unique challenges of ST data analysis. Many artificial intelligence (AI) methods have been developed to utilize various machine lea...
Autores principales: | Li, Yijun, Stanojevic, Stefan, Garmire, Lana X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201012/ https://www.ncbi.nlm.nih.gov/pubmed/35765645 http://dx.doi.org/10.1016/j.csbj.2022.05.056 |
Ejemplares similares
-
Computational Methods for Single-cell Multi-omics Integration and Alignment
por: Stanojevic, Stefan, et al.
Publicado: (2022) -
Artificial intelligence in retinal disease: clinical application, challenges, and future directions
por: Daich Varela, Malena, et al.
Publicado: (2023) -
New Horizons: Artificial Intelligence Tools for Managing Osteoporosis
por: Dimai, Hans Peter
Publicado: (2022) -
Artificial Intelligence to Improve Patient Understanding of Radiology
Reports
por: Amin, Kanhai, et al.
Publicado: (2023) -
Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome
por: Zhang, Yingkun, et al.
Publicado: (2022)