Cargando…
Data dimensionality reduction technique for clustering problem of metabolomics data
In metabolomics studies, independent analyses or replicating the metabolite concentration measurements are often performed to anticipate errors. On the other hand, the size of the dataset is increasing. For clustering purposes, obtaining representative information chemically from independent analyse...
Autores principales: | Rustam, Gunawan, Agus Yodi, Kresnowati, Made Tri Ari Penia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201019/ https://www.ncbi.nlm.nih.gov/pubmed/35721675 http://dx.doi.org/10.1016/j.heliyon.2022.e09715 |
Ejemplares similares
-
Dimensionality Reduction and Subspace Clustering in Mixed Reality for Condition Monitoring of High-Dimensional Production Data †
por: Hoppenstedt, Burkhard, et al.
Publicado: (2019) -
Geometric Structure of High-Dimensional Data and Dimensionality Reduction
por: Wang, Jianzhong
Publicado: (2011) -
Supervised dimensionality reduction for big data
por: Vogelstein, Joshua T., et al.
Publicado: (2021) -
Scalable Clustering of High-Dimensional Data Technique Using SPCM with Ant Colony Optimization Intelligence
por: Srinivasan, Thenmozhi, et al.
Publicado: (2015) -
Dimensionality Reduction and Louvain Agglomerative Hierarchical Clustering for Cluster-Specified Frequent Biomarker Discovery in Single-Cell Sequencing Data
por: Seth , Soumita, et al.
Publicado: (2022)