Cargando…

Long non-coding RNA (FALEC) promotes malignant behaviors of gastric cancer cells by regulating miR-203b/PIM3 axis

BACKGROUND: Existing research shows that long non-coding RNAs (lncRNAs) have important regulatory effects in gastric cancer (GC). In recent years, focally amplified lncRNA on chromosome 1 (FALEC) has been repeatedly reported to have carcinogenic effects in thyroid carcinoma, colorectal cancer, and e...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Wenjing, Gong, Mancheng, Xiao, Jianjun, Li, Huifen, Tian, Muyou, Wang, Senming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201125/
https://www.ncbi.nlm.nih.gov/pubmed/35722357
http://dx.doi.org/10.21037/atm-22-1561
Descripción
Sumario:BACKGROUND: Existing research shows that long non-coding RNAs (lncRNAs) have important regulatory effects in gastric cancer (GC). In recent years, focally amplified lncRNA on chromosome 1 (FALEC) has been repeatedly reported to have carcinogenic effects in thyroid carcinoma, colorectal cancer, and endometrial cancer, etc. While the role and mechanism of FALEC during GC tumorigenesis remains unclear. METHODS: The levels of FALEC, microRNA-203b (miR-203b), and Recombinant Pim-3 Oncogene (PIM3) were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell autophagy, proliferation, apoptosis, migration, and invasion were estimated using western blot, transmission electron microscopy (TEM), cell counting kit-8 (CCK-8), flow cytometer, and Transwell assays. The interaction between miR-203b and FALEC or PIM3 was verified using a dual-luciferase reporter assay. Moreover, the involvement of miR-203b and PIM3 in the regulatory effects of FALEC on GC was determined with rescue experiments. RESULTS: The results showed that FALEC and PIM3 were highly expressed, while miR-203b was lowly expressed, in GC. FALEC knockdown repressed GC cell proliferation, migration, and invasion, and promoted apoptosis and autophagy in vitro. Meanwhile, FALEC knockdown prevented growth and induced GC autophagy in vivo. This shows that FALEC upregulated PIM3 by sponging miR-203b in GC cells. Besides, FALEC induced the malignant behaviors of GC cells by regulating the miR-203b/PIM3 axis. CONCLUSIONS: The FALEC/miR-203b/PIM3 axis might be a promising therapeutic target for therapy in GC patients.