Cargando…

Network pharmacological analysis of active components of Tongqiao Huoxue Decoction in the treatment of intracerebral hemorrhage

BACKGROUND: Intracerebral hemorrhage (ICH) is a type of stroke which results in a high disability and mortality rate and has a poor prognosis. Tongqiao Huoxue Decoction (TQHXD) is a classical Chinese prescription. Clinical practice has proven that TQHXD can promote blood circulation and can effectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ji, Li, Xue-Yu, Liang, Jing, Xie, Jian, Deng, Cheng-Neng, Chen, Zhi-Jun, Lai, Chang-Sheng, Yang, Zhao-Jian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201131/
https://www.ncbi.nlm.nih.gov/pubmed/35722393
http://dx.doi.org/10.21037/atm-22-1403
Descripción
Sumario:BACKGROUND: Intracerebral hemorrhage (ICH) is a type of stroke which results in a high disability and mortality rate and has a poor prognosis. Tongqiao Huoxue Decoction (TQHXD) is a classical Chinese prescription. Clinical practice has proven that TQHXD can promote blood circulation and can effectively treat ICH and its sequelae. However, the current mechanism is still unclear. METHODS: The chemical components and target genes of TQHXD were collected from the Traditional Chinese medicine (TCM) Systems Pharmacology and Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine analysis platforms, and the gene expression data of ICH tissues were downloaded from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to obtain differentially co-expressed gene pairs and build a drug-target-disease network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the obtained target genes and shared genes. Finally, molecular docking was carried out to further clarify the utility of TQHXD for the treatment of ICH. RESULTS: A total of 304 differentially expressed genes in ICH, 42 TQHXD active ingredients, and 279 predicted targets of its active compounds were obtained. Bioinformatics analysis showed that they were involved in angiogenesis, the regulation of wound healing, and other biological processes. Furthermore, their participation in fluid shear stress and the atherosclerosis signaling pathway indicated their close association with the pathological processes of ICH. Finally, molecular docking was carried out to further confirm the tightly binding structural sites of the effective components of TQHXD and key proteins. CONCLUSIONS: In summary, the results of this study suggest that the mechanism of action of TQHXD in the treatment of ICH involves multiple targets and signaling pathways related to its occurrence and development. This study not only provides a new theoretical basis for the treatment of ICH with traditional Chinese medicine, but also provides new ideas for the research and development of drugs for the treatment of ICH.