Cargando…
Unsupervised Black-Box Model Domain Adaptation for Brain Tumor Segmentation
Unsupervised domain adaptation (UDA) is an emerging technique that enables the transfer of domain knowledge learned from a labeled source domain to unlabeled target domains, providing a way of coping with the difficulty of labeling in new domains. The majority of prior work has relied on both source...
Autores principales: | Liu, Xiaofeng, Yoo, Chaehwa, Xing, Fangxu, Kuo, C.-C. Jay, El Fakhri, Georges, Kang, Je-Won, Woo, Jonghye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201342/ https://www.ncbi.nlm.nih.gov/pubmed/35720708 http://dx.doi.org/10.3389/fnins.2022.837646 |
Ejemplares similares
-
Attentive Continuous Generative Self-training for Unsupervised Domain Adaptive Medical Image Translation
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Incremental Learning for Heterogeneous Structure Segmentation in Brain Tumor MRI
por: Liu, Xiaofeng, et al.
Publicado: (2023) -
Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models
por: Gómez, Jose L., et al.
Publicado: (2023) -
Cascading Alignment for Unsupervised Domain-Adaptive DETR with Improved DeNoising Anchor Boxes
por: Geng, Huantong, et al.
Publicado: (2022) -
Posterior Estimation Using Deep Learning: A Simulation Study of Compartmental Modeling in Dynamic PET
por: Liu, Xiaofeng, et al.
Publicado: (2023)