Cargando…
Chest L-Transformer: Local Features With Position Attention for Weakly Supervised Chest Radiograph Segmentation and Classification
We consider the problem of weakly supervised segmentation on chest radiographs. The chest radiograph is the most common means of screening and diagnosing thoracic diseases. Weakly supervised deep learning models have gained increasing popularity in medical image segmentation. However, these models a...
Autores principales: | Gu, Hong, Wang, Hongyu, Qin, Pan, Wang, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201450/ https://www.ncbi.nlm.nih.gov/pubmed/35721071 http://dx.doi.org/10.3389/fmed.2022.923456 |
Ejemplares similares
-
U-shaped GAN for Semi-Supervised Learning and Unsupervised Domain Adaptation in High Resolution Chest Radiograph Segmentation
por: Wang, Hongyu, et al.
Publicado: (2022) -
Deep learning attention-guided radiomics for COVID-19 chest radiograph classification
por: Yang, Dongrong, et al.
Publicado: (2022) -
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks
por: Wang, Hongyu, et al.
Publicado: (2020) -
Imaging the Chest: The Chest Radiograph
por: Broder, Joshua
Publicado: (2011) -
Weakly-Supervised Network for Detection of COVID-19 in Chest CT Scans
Publicado: (2020)