Cargando…

Nitrogen Removal From Nitrate-Containing Wastewaters in Hydrogen-Based Membrane Biofilm Reactors via Hydrogen Autotrophic Denitrification: Biofilm Structure, Microbial Community and Optimization Strategies

The hydrogen-based membrane biofilm reactor (MBfR) has been widely applied in nitrate removal from wastewater, while the erratic fluctuation of treatment efficiency is in consequence of unstable operation parameters. In this study, hydrogen pressure, pH, and biofilm thickness were optimized as the k...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Kun, Feng, Xinghui, Yao, Yi, Zhu, Zongqiang, Lin, Hua, Zhang, Xuehong, Wang, Dunqiu, Li, Haixiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201494/
https://www.ncbi.nlm.nih.gov/pubmed/35722343
http://dx.doi.org/10.3389/fmicb.2022.924084
Descripción
Sumario:The hydrogen-based membrane biofilm reactor (MBfR) has been widely applied in nitrate removal from wastewater, while the erratic fluctuation of treatment efficiency is in consequence of unstable operation parameters. In this study, hydrogen pressure, pH, and biofilm thickness were optimized as the key controlling parameters to operate MBfR. The results of 653.31 μm in biofilm thickness, 0.05 MPa in hydrogen pressure and pH in 7.78 suggesting high-efficiency [Formula: see text] removal and the [Formula: see text] removal flux was 1.15 g·m(−2) d(−1). 16S rRNA gene analysis revealed that Pseudomonas, Methyloversatilis, Thauera, Nitrospira, and Hydrogenophaga were the five most abundant bacterial genera in MBfRs after optimization. Moreover, significant increases of Pseudomonas relative abundances from 0.36 to 9.77% suggested that optimization could effectively remove nitrogen from MBfRs. Membrane pores and surfaces exhibited varying degrees of calcification during stable operation, as evinced by Ca(2+) precipitation adhering to MBfR membrane surfaces based on scanning electron microscopy (SEM), atomic force microscopy (AFM) analyses. Scanning electron microscopy–energy dispersive spectrometer (SEM–EDS) analyses also confirmed that the primary elemental composition of polyvinyl chloride (PVC) membrane surfaces after response surface methodology (RSM) optimization comprised Ca, O, C, P, and Fe. Further, X-ray diffraction (XRD) analyses indicated the formation of Ca(5)F(PO(4))(3) geometry during the stable operation phase.