Cargando…
O-Net: A Novel Framework With Deep Fusion of CNN and Transformer for Simultaneous Segmentation and Classification
The application of deep learning in the medical field has continuously made huge breakthroughs in recent years. Based on convolutional neural network (CNN), the U-Net framework has become the benchmark of the medical image segmentation task. However, this framework cannot fully learn global informat...
Autores principales: | Wang, Tao, Lan, Junlin, Han, Zixin, Hu, Ziwei, Huang, Yuxiu, Deng, Yanglin, Zhang, Hejun, Wang, Jianchao, Chen, Musheng, Jiang, Haiyan, Lee, Ren-Guey, Gao, Qinquan, Du, Ming, Tong, Tong, Chen, Gang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201625/ https://www.ncbi.nlm.nih.gov/pubmed/35720715 http://dx.doi.org/10.3389/fnins.2022.876065 |
Ejemplares similares
-
A Deep Learning Quantification Algorithm for HER2 Scoring of Gastric Cancer
por: Han, Zixin, et al.
Publicado: (2022) -
Using less annotation workload to establish a pathological auxiliary diagnosis system for gastric cancer
por: Lan, Junlin, et al.
Publicado: (2023) -
BAF-Net: Bidirectional attention fusion network via CNN and transformers for the pepper leaf segmentation
por: Fang, Jiangxiong, et al.
Publicado: (2023) -
TC-Net: Dual coding network of Transformer and CNN for skin lesion segmentation
por: Dong, Yuying, et al.
Publicado: (2022) -
A Lightweight CNN Model Based on GhostNet
por: Wang, Zhong, et al.
Publicado: (2022)