Cargando…
Global Context-Aware-Based Deformable Residual Network Module for Precise Pest Recognition and Detection
An accurate and robust pest detection and recognition scheme is an important step to enable the high quality and yield of agricultural products according to integrated pest management (IPM). Due to pose-variant, serious overlap, dense distribution, and interclass similarity of agricultural pests, th...
Autores principales: | Jiao, Lin, Li, Gaoqiang, Chen, Peng, Wang, Rujing, Du, Jianming, Liu, Haiyun, Dong, Shifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201688/ https://www.ncbi.nlm.nih.gov/pubmed/35720529 http://dx.doi.org/10.3389/fpls.2022.895944 |
Ejemplares similares
-
ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition
por: Wang, Fenmei, et al.
Publicado: (2022) -
Automatic Crop Pest Detection Oriented Multiscale Feature Fusion Approach
por: Dong, Shifeng, et al.
Publicado: (2022) -
WSRD-Net: A Convolutional Neural Network-Based Arbitrary-Oriented Wheat Stripe Rust Detection Method
por: Liu, Haiyun, et al.
Publicado: (2022) -
Editorial: Deep learning in crop diseases and insect pests
por: Chen, Peng, et al.
Publicado: (2023) -
Prior knowledge auxiliary for few-shot pest detection in the wild
por: Wang, Xiaodong, et al.
Publicado: (2023)