Cargando…
SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination
Depression affects many people around the world today and is considered a global problem. Electroencephalogram (EEG) measurement is an appropriate way to understand the underlying mechanisms of major depressive disorder (MDD) to distinguish depression from normal control. With the development of dee...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201718/ https://www.ncbi.nlm.nih.gov/pubmed/35722169 http://dx.doi.org/10.3389/fninf.2022.914823 |
_version_ | 1784728375833657344 |
---|---|
author | Deng, Xin Fan, Xufeng Lv, Xiangwei Sun, Kaiwei |
author_facet | Deng, Xin Fan, Xufeng Lv, Xiangwei Sun, Kaiwei |
author_sort | Deng, Xin |
collection | PubMed |
description | Depression affects many people around the world today and is considered a global problem. Electroencephalogram (EEG) measurement is an appropriate way to understand the underlying mechanisms of major depressive disorder (MDD) to distinguish depression from normal control. With the development of deep learning methods, many researchers have adopted deep learning models to improve the classification accuracy of depression recognition. However, there are few studies on designing convolution filters for spatial and frequency domain feature learning in different brain regions. In this study, SparNet, a convolutional neural network composed of five parallel convolutional filters and the SENet, is proposed to learn EEG space-frequency domain characteristics and distinguish between depressive and normal control. The model is trained and tested by the cross-validation method of subject division. The results show that SparNet achieves a sensitivity of 95.07%, a specificity of 93.66%, and an accuracy of 94.37% in classification. Therefore, our results can conclude that the proposed SparNet model is effective in detecting depression using EEG signals. It also indicates that the combination of spatial information and frequency domain information is an effective way to identify patients with depression. |
format | Online Article Text |
id | pubmed-9201718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92017182022-06-17 SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination Deng, Xin Fan, Xufeng Lv, Xiangwei Sun, Kaiwei Front Neuroinform Neuroscience Depression affects many people around the world today and is considered a global problem. Electroencephalogram (EEG) measurement is an appropriate way to understand the underlying mechanisms of major depressive disorder (MDD) to distinguish depression from normal control. With the development of deep learning methods, many researchers have adopted deep learning models to improve the classification accuracy of depression recognition. However, there are few studies on designing convolution filters for spatial and frequency domain feature learning in different brain regions. In this study, SparNet, a convolutional neural network composed of five parallel convolutional filters and the SENet, is proposed to learn EEG space-frequency domain characteristics and distinguish between depressive and normal control. The model is trained and tested by the cross-validation method of subject division. The results show that SparNet achieves a sensitivity of 95.07%, a specificity of 93.66%, and an accuracy of 94.37% in classification. Therefore, our results can conclude that the proposed SparNet model is effective in detecting depression using EEG signals. It also indicates that the combination of spatial information and frequency domain information is an effective way to identify patients with depression. Frontiers Media S.A. 2022-06-02 /pmc/articles/PMC9201718/ /pubmed/35722169 http://dx.doi.org/10.3389/fninf.2022.914823 Text en Copyright © 2022 Deng, Fan, Lv and Sun. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Deng, Xin Fan, Xufeng Lv, Xiangwei Sun, Kaiwei SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title | SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title_full | SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title_fullStr | SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title_full_unstemmed | SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title_short | SparNet: A Convolutional Neural Network for EEG Space-Frequency Feature Learning and Depression Discrimination |
title_sort | sparnet: a convolutional neural network for eeg space-frequency feature learning and depression discrimination |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201718/ https://www.ncbi.nlm.nih.gov/pubmed/35722169 http://dx.doi.org/10.3389/fninf.2022.914823 |
work_keys_str_mv | AT dengxin sparnetaconvolutionalneuralnetworkforeegspacefrequencyfeaturelearninganddepressiondiscrimination AT fanxufeng sparnetaconvolutionalneuralnetworkforeegspacefrequencyfeaturelearninganddepressiondiscrimination AT lvxiangwei sparnetaconvolutionalneuralnetworkforeegspacefrequencyfeaturelearninganddepressiondiscrimination AT sunkaiwei sparnetaconvolutionalneuralnetworkforeegspacefrequencyfeaturelearninganddepressiondiscrimination |