Cargando…
Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards
Evolutionary correlations between phenotypic and environmental traits characterize adaptive radiations. However, the lizard genus Liolaemus, one of the most ecologically diverse terrestrial vertebrate radiations on earth, has so far shown limited or mixed evidence of adaptive diversification in phen...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201750/ https://www.ncbi.nlm.nih.gov/pubmed/35784059 http://dx.doi.org/10.1002/ece3.9009 |
_version_ | 1784728381438296064 |
---|---|
author | Edwards, Danielle L. Avila, Luciano J. Martinez, Lorena Sites, Jack W. Morando, Mariana |
author_facet | Edwards, Danielle L. Avila, Luciano J. Martinez, Lorena Sites, Jack W. Morando, Mariana |
author_sort | Edwards, Danielle L. |
collection | PubMed |
description | Evolutionary correlations between phenotypic and environmental traits characterize adaptive radiations. However, the lizard genus Liolaemus, one of the most ecologically diverse terrestrial vertebrate radiations on earth, has so far shown limited or mixed evidence of adaptive diversification in phenotype. Restricted use of comprehensive environmental data, incomplete taxonomic representation and not considering phylogenetic uncertainty may have led to contradictory evidence. We compiled a 26‐taxon dataset for the Liolaemus gracilis species group, representing much of the ecological diversity represented within Liolaemus and used environmental data to characterize how environments occupied by species' relate to phenotypic evolution. Our analyses, explicitly accounting for phylogenetic uncertainty, suggest diversification in phenotypic traits toward the present, with body shape evolution rapidly evolving in this group. Body shape evolution correlates with the occupation of different structural habitats indicated by vegetation axes suggesting species have adapted for maximal locomotory performance in these habitats. Our results also imply that the effects of phylogenetic uncertainty and model misspecification may be more extensive on univariate, relative to multivariate analyses of evolutionary correlations, which is an important consideration in analyzing data from rapidly radiating adaptive radiations. |
format | Online Article Text |
id | pubmed-9201750 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92017502022-07-01 Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards Edwards, Danielle L. Avila, Luciano J. Martinez, Lorena Sites, Jack W. Morando, Mariana Ecol Evol Research Articles Evolutionary correlations between phenotypic and environmental traits characterize adaptive radiations. However, the lizard genus Liolaemus, one of the most ecologically diverse terrestrial vertebrate radiations on earth, has so far shown limited or mixed evidence of adaptive diversification in phenotype. Restricted use of comprehensive environmental data, incomplete taxonomic representation and not considering phylogenetic uncertainty may have led to contradictory evidence. We compiled a 26‐taxon dataset for the Liolaemus gracilis species group, representing much of the ecological diversity represented within Liolaemus and used environmental data to characterize how environments occupied by species' relate to phenotypic evolution. Our analyses, explicitly accounting for phylogenetic uncertainty, suggest diversification in phenotypic traits toward the present, with body shape evolution rapidly evolving in this group. Body shape evolution correlates with the occupation of different structural habitats indicated by vegetation axes suggesting species have adapted for maximal locomotory performance in these habitats. Our results also imply that the effects of phylogenetic uncertainty and model misspecification may be more extensive on univariate, relative to multivariate analyses of evolutionary correlations, which is an important consideration in analyzing data from rapidly radiating adaptive radiations. John Wiley and Sons Inc. 2022-06-16 /pmc/articles/PMC9201750/ /pubmed/35784059 http://dx.doi.org/10.1002/ece3.9009 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Edwards, Danielle L. Avila, Luciano J. Martinez, Lorena Sites, Jack W. Morando, Mariana Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title | Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title_full | Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title_fullStr | Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title_full_unstemmed | Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title_short | Environmental correlates of phenotypic evolution in ecologically diverse Liolaemus lizards |
title_sort | environmental correlates of phenotypic evolution in ecologically diverse liolaemus lizards |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9201750/ https://www.ncbi.nlm.nih.gov/pubmed/35784059 http://dx.doi.org/10.1002/ece3.9009 |
work_keys_str_mv | AT edwardsdaniellel environmentalcorrelatesofphenotypicevolutioninecologicallydiverseliolaemuslizards AT avilalucianoj environmentalcorrelatesofphenotypicevolutioninecologicallydiverseliolaemuslizards AT martinezlorena environmentalcorrelatesofphenotypicevolutioninecologicallydiverseliolaemuslizards AT sitesjackw environmentalcorrelatesofphenotypicevolutioninecologicallydiverseliolaemuslizards AT morandomariana environmentalcorrelatesofphenotypicevolutioninecologicallydiverseliolaemuslizards |