Cargando…
Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips
[Image: see text] A hydrophobic surface modification followed by solvent vapor-assisted thermal bonding was developed for the fabrication of cyclic olefin copolymer (COC) microfluidic chips. The modifier species 1H,1H,2H,2H-perfluorooctyl trichlorosilane (FOTS) was used to achieve the entrapment fun...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202056/ https://www.ncbi.nlm.nih.gov/pubmed/35721891 http://dx.doi.org/10.1021/acsomega.2c01948 |
_version_ | 1784728450845638656 |
---|---|
author | Guan, Tianyu Yuket, Sineenat Cong, Hengji Carton, Douglas William Zhang, Nan |
author_facet | Guan, Tianyu Yuket, Sineenat Cong, Hengji Carton, Douglas William Zhang, Nan |
author_sort | Guan, Tianyu |
collection | PubMed |
description | [Image: see text] A hydrophobic surface modification followed by solvent vapor-assisted thermal bonding was developed for the fabrication of cyclic olefin copolymer (COC) microfluidic chips. The modifier species 1H,1H,2H,2H-perfluorooctyl trichlorosilane (FOTS) was used to achieve the entrapment functionalization on the COC surface, and a hydrophobic surface was developed through the formation of a Si–O–Si crosslink network. The COC surface coated with 40 vol % cyclohexane, 59 vol % acetone, and 1 vol % FOTS by ultrasonic spray 10 and 20 times maintained its hydrophobicity with the water contact angle increasing from ∼86 to ∼115° after storage for 3 weeks. The solvent vapor-assisted thermal bonding was optimized to achieve high bond strength and good channel integrity. The results revealed that the COC chips exposed to 60 vol % cyclohexane and 40 vol % acetone for 120 s have the highest bond strength, with a burst pressure of ∼17 bar, which is sufficient for microfluidics applications such as droplet generation. After bonding, the channel maintained its integrity without any channel collapse. The hydrophobicity was also maintained, proved by the water contact angle of ∼115° on the bonded film, as well as the curved shape of water flow in the chip channel by capillary test. The combined hydrophobic treatment and solvent bonding process show significant benefits for scale-up production compared to conventional hydrophilic treatment for bonding and hydrophobic treatment using surface grafting or chemical vapor deposition since it does not require nasty chemistry, long-term treatment, vacuum chamber, and can be integrated into production line easily. Such a process can also be extended to permanent hydrophilic treatment combined with the bonding process and will lay a foundation for low-cost mass production of plastic microfluidic cartridges. |
format | Online Article Text |
id | pubmed-9202056 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92020562022-06-17 Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips Guan, Tianyu Yuket, Sineenat Cong, Hengji Carton, Douglas William Zhang, Nan ACS Omega [Image: see text] A hydrophobic surface modification followed by solvent vapor-assisted thermal bonding was developed for the fabrication of cyclic olefin copolymer (COC) microfluidic chips. The modifier species 1H,1H,2H,2H-perfluorooctyl trichlorosilane (FOTS) was used to achieve the entrapment functionalization on the COC surface, and a hydrophobic surface was developed through the formation of a Si–O–Si crosslink network. The COC surface coated with 40 vol % cyclohexane, 59 vol % acetone, and 1 vol % FOTS by ultrasonic spray 10 and 20 times maintained its hydrophobicity with the water contact angle increasing from ∼86 to ∼115° after storage for 3 weeks. The solvent vapor-assisted thermal bonding was optimized to achieve high bond strength and good channel integrity. The results revealed that the COC chips exposed to 60 vol % cyclohexane and 40 vol % acetone for 120 s have the highest bond strength, with a burst pressure of ∼17 bar, which is sufficient for microfluidics applications such as droplet generation. After bonding, the channel maintained its integrity without any channel collapse. The hydrophobicity was also maintained, proved by the water contact angle of ∼115° on the bonded film, as well as the curved shape of water flow in the chip channel by capillary test. The combined hydrophobic treatment and solvent bonding process show significant benefits for scale-up production compared to conventional hydrophilic treatment for bonding and hydrophobic treatment using surface grafting or chemical vapor deposition since it does not require nasty chemistry, long-term treatment, vacuum chamber, and can be integrated into production line easily. Such a process can also be extended to permanent hydrophilic treatment combined with the bonding process and will lay a foundation for low-cost mass production of plastic microfluidic cartridges. American Chemical Society 2022-05-31 /pmc/articles/PMC9202056/ /pubmed/35721891 http://dx.doi.org/10.1021/acsomega.2c01948 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Guan, Tianyu Yuket, Sineenat Cong, Hengji Carton, Douglas William Zhang, Nan Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic Chips |
title | Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted
Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic
Chips |
title_full | Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted
Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic
Chips |
title_fullStr | Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted
Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic
Chips |
title_full_unstemmed | Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted
Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic
Chips |
title_short | Permanent Hydrophobic Surface Treatment Combined with Solvent Vapor-Assisted
Thermal Bonding for Mass Production of Cyclic Olefin Copolymer Microfluidic
Chips |
title_sort | permanent hydrophobic surface treatment combined with solvent vapor-assisted
thermal bonding for mass production of cyclic olefin copolymer microfluidic
chips |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202056/ https://www.ncbi.nlm.nih.gov/pubmed/35721891 http://dx.doi.org/10.1021/acsomega.2c01948 |
work_keys_str_mv | AT guantianyu permanenthydrophobicsurfacetreatmentcombinedwithsolventvaporassistedthermalbondingformassproductionofcyclicolefincopolymermicrofluidicchips AT yuketsineenat permanenthydrophobicsurfacetreatmentcombinedwithsolventvaporassistedthermalbondingformassproductionofcyclicolefincopolymermicrofluidicchips AT conghengji permanenthydrophobicsurfacetreatmentcombinedwithsolventvaporassistedthermalbondingformassproductionofcyclicolefincopolymermicrofluidicchips AT cartondouglaswilliam permanenthydrophobicsurfacetreatmentcombinedwithsolventvaporassistedthermalbondingformassproductionofcyclicolefincopolymermicrofluidicchips AT zhangnan permanenthydrophobicsurfacetreatmentcombinedwithsolventvaporassistedthermalbondingformassproductionofcyclicolefincopolymermicrofluidicchips |