Cargando…
Meta-matching as a simple framework to translate phenotypic predictive models from big to small data
We propose a simple framework – meta-matching – to translate predictive models from large-scale datasets to new unseen non-brain-imaging phenotypes in small-scale studies. The key consideration is that a unique phenotype from a boutique study likely correlates with (but is not the same as) related p...
Autores principales: | He, Tong, An, Lijun, Chen, Pansheng, Chen, Jianzhong, Feng, Jiashi, Bzdok, Danilo, Holmes, Avram J, Eickhoff, Simon B., Thomas Yeo, B.T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202200/ https://www.ncbi.nlm.nih.gov/pubmed/35578132 http://dx.doi.org/10.1038/s41593-022-01059-9 |
Ejemplares similares
-
Relationship between prediction accuracy and feature importance reliability: An empirical and theoretical study
por: Chen, Jianzhong, et al.
Publicado: (2023) -
Cross-ethnicity/race generalization failure of behavioral prediction
from resting-state functional connectivity
por: Li, Jingwei, et al.
Publicado: (2022) -
Shared and unique brain network features predict cognitive, personality, and mental health scores in the ABCD study
por: Chen, Jianzhong, et al.
Publicado: (2022) -
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity
por: Yan, Xiaoxuan, et al.
Publicado: (2023) -
Predicting Alzheimer’s disease progression using deep recurrent neural networks()
por: Nguyen, Minh, et al.
Publicado: (2020)