Cargando…
Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis
BACKGROUND: Empagliflozin has been reported to protect endothelial cell function, regardless of diabetes status. However, the role of empagliflozin in microvascular protection during myocardial ischemia reperfusion injury (I/R) has not been fully understood. METHODS: Electron microscopy, western blo...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202214/ https://www.ncbi.nlm.nih.gov/pubmed/35705980 http://dx.doi.org/10.1186/s12933-022-01532-6 |
Sumario: | BACKGROUND: Empagliflozin has been reported to protect endothelial cell function, regardless of diabetes status. However, the role of empagliflozin in microvascular protection during myocardial ischemia reperfusion injury (I/R) has not been fully understood. METHODS: Electron microscopy, western blots, immunofluorescence, qPCR, mutant plasmid transfection, co-immunoprecipitation were employed to explore whether empagliflozin could alleviate microvascular damage and endothelial injury during cardiac I/R injury. RESULTS: In mice, empagliflozin attenuated I/R injury-induced microvascular occlusion and microthrombus formation. In human coronary artery endothelial cells, I/R injury led to adhesive factor upregulation, endothelial nitric oxide synthase inactivation, focal adhesion kinase downregulation, barrier dysfunction, cytoskeletal degradation and cellular apoptosis; however, empagliflozin treatment diminished these effects. Empagliflozin improved mitochondrial oxidative stress, mitochondrial respiration and adenosine triphosphate metabolism in I/R-treated human coronary artery endothelial cells by preventing the phosphorylation of dynamin-related protein 1 (Drp1) and mitochondrial fission 1 protein (Fis1), thus repressing mitochondrial fission. The protective effects of empagliflozin on mitochondrial homeostasis and endothelial function were abrogated by the re-introduction of phosphorylated Fis1, but not phosphorylated Drp1, suggesting that Fis1 dephosphorylation is the predominant mechanism whereby empagliflozin inhibits mitochondrial fission during I/R injury. Besides, I/R injury induced Fis1 phosphorylation primarily by activating the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) pathway, while empagliflozin inactivated this pathway by exerting anti-oxidative effects. CONCLUSIONS: These results demonstrated that empagliflozin can protect the microvasculature by inhibiting the DNA-PKcs/Fis1/mitochondrial fission pathway during myocardial I/R injury. |
---|