Cargando…
Biological Efficacy Comparison of Natural Tussah Silk and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration
[Image: see text] Biopolymer nanofiber membranes are attracting interest as promising biomaterial scaffolds with a remarkable range of structural and functional performances for guided bone regeneration (GBR). In this study, tussah silk nanofiber (TSn) and Bombyx mori silk nanofiber (BSn) membranes...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202271/ https://www.ncbi.nlm.nih.gov/pubmed/35721914 http://dx.doi.org/10.1021/acsomega.2c01784 |
_version_ | 1784728496931602432 |
---|---|
author | Chen, Yumao Chen, Ming Gao, Yang Zhang, Feng Jin, Min Lu, Shijun Han, Minxuan |
author_facet | Chen, Yumao Chen, Ming Gao, Yang Zhang, Feng Jin, Min Lu, Shijun Han, Minxuan |
author_sort | Chen, Yumao |
collection | PubMed |
description | [Image: see text] Biopolymer nanofiber membranes are attracting interest as promising biomaterial scaffolds with a remarkable range of structural and functional performances for guided bone regeneration (GBR). In this study, tussah silk nanofiber (TSn) and Bombyx mori silk nanofiber (BSn) membranes were prepared by physical shearing. The diameters of the TSn and BSn membranes were 146.09 ± 63.56 and 120.99 ± 91.32 nm, respectively. TSn showed a Young’s modulus of 3.61 ± 0.64 GPa and a tensile strength of 74.27 ± 5.19 MPa, which were superior to those of BSn, with a Young’s modulus of 0.16 ± 0.03 GPa and a tensile strength of 4.86 ± 0.61 MPa. The potential of TSn and BSn membranes to guide bone regeneration was explored. In vitro, the TSn membrane exhibited significantly higher cell proliferation for MC3T3-E1 cells than the BSn membrane. In a cranial bone defect in a rat model, the TSn and BSn membranes displayed superior bone regeneration compared to the control because the membrane prevented the ingrowth of soft tissue to the defective area. Compared to the BSn membrane, the TSn membrane improved damaged bone regeneration, presumably due to its superior mechanical properties, high osteoconductivity, and increased cell proliferation. The TSn membrane has a bionic structure, excellent mechanical properties, and greater biocompatibility, making it an ideal candidate for GBR. |
format | Online Article Text |
id | pubmed-9202271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92022712022-06-17 Biological Efficacy Comparison of Natural Tussah Silk and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration Chen, Yumao Chen, Ming Gao, Yang Zhang, Feng Jin, Min Lu, Shijun Han, Minxuan ACS Omega [Image: see text] Biopolymer nanofiber membranes are attracting interest as promising biomaterial scaffolds with a remarkable range of structural and functional performances for guided bone regeneration (GBR). In this study, tussah silk nanofiber (TSn) and Bombyx mori silk nanofiber (BSn) membranes were prepared by physical shearing. The diameters of the TSn and BSn membranes were 146.09 ± 63.56 and 120.99 ± 91.32 nm, respectively. TSn showed a Young’s modulus of 3.61 ± 0.64 GPa and a tensile strength of 74.27 ± 5.19 MPa, which were superior to those of BSn, with a Young’s modulus of 0.16 ± 0.03 GPa and a tensile strength of 4.86 ± 0.61 MPa. The potential of TSn and BSn membranes to guide bone regeneration was explored. In vitro, the TSn membrane exhibited significantly higher cell proliferation for MC3T3-E1 cells than the BSn membrane. In a cranial bone defect in a rat model, the TSn and BSn membranes displayed superior bone regeneration compared to the control because the membrane prevented the ingrowth of soft tissue to the defective area. Compared to the BSn membrane, the TSn membrane improved damaged bone regeneration, presumably due to its superior mechanical properties, high osteoconductivity, and increased cell proliferation. The TSn membrane has a bionic structure, excellent mechanical properties, and greater biocompatibility, making it an ideal candidate for GBR. American Chemical Society 2022-05-31 /pmc/articles/PMC9202271/ /pubmed/35721914 http://dx.doi.org/10.1021/acsomega.2c01784 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Chen, Yumao Chen, Ming Gao, Yang Zhang, Feng Jin, Min Lu, Shijun Han, Minxuan Biological Efficacy Comparison of Natural Tussah Silk and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title | Biological Efficacy Comparison of Natural Tussah Silk
and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title_full | Biological Efficacy Comparison of Natural Tussah Silk
and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title_fullStr | Biological Efficacy Comparison of Natural Tussah Silk
and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title_full_unstemmed | Biological Efficacy Comparison of Natural Tussah Silk
and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title_short | Biological Efficacy Comparison of Natural Tussah Silk
and Mulberry Silk Nanofiber Membranes for Guided Bone Regeneration |
title_sort | biological efficacy comparison of natural tussah silk
and mulberry silk nanofiber membranes for guided bone regeneration |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202271/ https://www.ncbi.nlm.nih.gov/pubmed/35721914 http://dx.doi.org/10.1021/acsomega.2c01784 |
work_keys_str_mv | AT chenyumao biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT chenming biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT gaoyang biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT zhangfeng biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT jinmin biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT lushijun biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration AT hanminxuan biologicalefficacycomparisonofnaturaltussahsilkandmulberrysilknanofibermembranesforguidedboneregeneration |