Cargando…
Determination of the Gas–Oil Ratio below the Bubble Point Pressure Using the Adaptive Neuro-Fuzzy Inference System (ANFIS)
[Image: see text] Determining the solution gas–oil ratio (R(s)) below the bubble point is a vital requirement that aids in multiple production engineering and reservoir analysis issues. Currently, there are some models available for the determination of the solution gas–oil ratio under the bubble po...
Autores principales: | Ayoub Mohammed, Mohammed Abdalla, Alakbari, Fahd Saeed, Nathan, Clarence Prebla, Mohyaldinn, Mysara Eissa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202275/ https://www.ncbi.nlm.nih.gov/pubmed/35721985 http://dx.doi.org/10.1021/acsomega.2c01496 |
Ejemplares similares
-
A reservoir bubble point pressure prediction model using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique with trend analysis
por: Alakbari, Fahd Saeed, et al.
Publicado: (2022) -
Deep Learning Approach for Robust Prediction of Reservoir
Bubble Point Pressure
por: Alakbari, Fahd Saeed, et al.
Publicado: (2021) -
A robust fuzzy logic-based model for predicting the critical total drawdown in sand production in oil and gas wells
por: Alakbari, Fahd Saeed, et al.
Publicado: (2021) -
An Accurate Reservoir’s Bubble Point Pressure
Correlation
por: Alakbari, Fahd Saeed, et al.
Publicado: (2022) -
A decision tree model for accurate prediction of sand erosion in elbow geometry
por: Alakbari, Fahd Saeed, et al.
Publicado: (2023)