Cargando…
Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms
[Image: see text] We investigate the performance of beyond-GW approaches in many-body perturbation theory by addressing atoms described within the spherical approximation via a dedicated numerical treatment based on B-splines and spherical harmonics. We consider the GW, second Born (2B), and GW + se...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202310/ https://www.ncbi.nlm.nih.gov/pubmed/35561415 http://dx.doi.org/10.1021/acs.jctc.2c00048 |
_version_ | 1784728506639319040 |
---|---|
author | Vacondio, S. Varsano, D. Ruini, A. Ferretti, A. |
author_facet | Vacondio, S. Varsano, D. Ruini, A. Ferretti, A. |
author_sort | Vacondio, S. |
collection | PubMed |
description | [Image: see text] We investigate the performance of beyond-GW approaches in many-body perturbation theory by addressing atoms described within the spherical approximation via a dedicated numerical treatment based on B-splines and spherical harmonics. We consider the GW, second Born (2B), and GW + second order screened exchange (GW+SOSEX) self-energies and use them to obtain ionization potentials from the quasi-particle equation (QPE) solved perturbatively on top of independent-particle calculations. We also solve the linearized Sham–Schlüter equation (LSSE) and compare the resulting xc potentials against exact data. We find that the LSSE provides consistent starting points for the QPE but does not present any practical advantage in the present context. Still, the features of the xc potentials obtained with it shed light on possible strategies for the inclusion of beyond-GW diagrams in the many-body self-energy. Our findings show that solving the QPE with the GW+SOSEX self-energy on top of a PBE or PBE0 solution is a viable scheme to go beyond GW in finite systems, even in the atomic limit. However, GW shows a comparable performance if one agrees to use a hybrid starting point. We also obtain promising results with the 2B self-energy on top of Hartree–Fock, suggesting that the full time-dependent Hartree–Fock vertex may be another viable beyond-GW scheme for finite systems. |
format | Online Article Text |
id | pubmed-9202310 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92023102022-06-17 Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms Vacondio, S. Varsano, D. Ruini, A. Ferretti, A. J Chem Theory Comput [Image: see text] We investigate the performance of beyond-GW approaches in many-body perturbation theory by addressing atoms described within the spherical approximation via a dedicated numerical treatment based on B-splines and spherical harmonics. We consider the GW, second Born (2B), and GW + second order screened exchange (GW+SOSEX) self-energies and use them to obtain ionization potentials from the quasi-particle equation (QPE) solved perturbatively on top of independent-particle calculations. We also solve the linearized Sham–Schlüter equation (LSSE) and compare the resulting xc potentials against exact data. We find that the LSSE provides consistent starting points for the QPE but does not present any practical advantage in the present context. Still, the features of the xc potentials obtained with it shed light on possible strategies for the inclusion of beyond-GW diagrams in the many-body self-energy. Our findings show that solving the QPE with the GW+SOSEX self-energy on top of a PBE or PBE0 solution is a viable scheme to go beyond GW in finite systems, even in the atomic limit. However, GW shows a comparable performance if one agrees to use a hybrid starting point. We also obtain promising results with the 2B self-energy on top of Hartree–Fock, suggesting that the full time-dependent Hartree–Fock vertex may be another viable beyond-GW scheme for finite systems. American Chemical Society 2022-05-13 2022-06-14 /pmc/articles/PMC9202310/ /pubmed/35561415 http://dx.doi.org/10.1021/acs.jctc.2c00048 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Vacondio, S. Varsano, D. Ruini, A. Ferretti, A. Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms |
title | Numerically Precise Benchmark of Many-Body Self-Energies
on Spherical Atoms |
title_full | Numerically Precise Benchmark of Many-Body Self-Energies
on Spherical Atoms |
title_fullStr | Numerically Precise Benchmark of Many-Body Self-Energies
on Spherical Atoms |
title_full_unstemmed | Numerically Precise Benchmark of Many-Body Self-Energies
on Spherical Atoms |
title_short | Numerically Precise Benchmark of Many-Body Self-Energies
on Spherical Atoms |
title_sort | numerically precise benchmark of many-body self-energies
on spherical atoms |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202310/ https://www.ncbi.nlm.nih.gov/pubmed/35561415 http://dx.doi.org/10.1021/acs.jctc.2c00048 |
work_keys_str_mv | AT vacondios numericallyprecisebenchmarkofmanybodyselfenergiesonsphericalatoms AT varsanod numericallyprecisebenchmarkofmanybodyselfenergiesonsphericalatoms AT ruinia numericallyprecisebenchmarkofmanybodyselfenergiesonsphericalatoms AT ferrettia numericallyprecisebenchmarkofmanybodyselfenergiesonsphericalatoms |