Cargando…

Automating fake news detection using PPCA and levy flight-based LSTM

In recent years, rumours and fake news are spreading widely and very rapidly all over the world. Such circumstances lead to the propagation and production of an inaccurate news article. Also, misinformation and fake news are increased by the user without proper verification. Hence, it is necessary t...

Descripción completa

Detalles Bibliográficos
Autores principales: Dixit, Dheeraj Kumar, Bhagat, Amit, Dangi, Dharmendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202495/
https://www.ncbi.nlm.nih.gov/pubmed/35729952
http://dx.doi.org/10.1007/s00500-022-07215-4
Descripción
Sumario:In recent years, rumours and fake news are spreading widely and very rapidly all over the world. Such circumstances lead to the propagation and production of an inaccurate news article. Also, misinformation and fake news are increased by the user without proper verification. Hence, it is necessary to restrict the spreading of fake information on mass media and to promote confidence all over the world. For this purpose, this paper recognizes the detection of fake news in an effective manner. The proposed methodology in detecting fake news consists of four different phases namely the data pre-processing phase, feature reduction phase, feature extraction phase as well as the classification phase. During data pre-processing, the input data are pre-processed by employing tokenization, stop-words deletion as well as stemming. In the second phase, the features are reduced by employing PPCA to enhance accuracy. Then the extracted feature is provided to the classification phase where LSTM-LF algorithm is utilized to classify the news as fake or real optimally. Furthermore, this paper utilizes four different datasets namely the Buzzfeed dataset, GossipCop dataset, ISOT dataset as well as Politifact dataset for evaluation. The performance evaluation and the comparative analysis are conducted and the analysis reveals that the proposed approach provides better performances when compared to other fake detection-based approaches.