Cargando…
Automatic information extraction from childhood cancer pathology reports
OBJECTIVES: The International Classification of Childhood Cancer (ICCC) facilitates the effective classification of a heterogeneous group of cancers in the important pediatric population. However, there has been no development of machine learning models for the ICCC classification. We developed deep...
Autores principales: | Yoon, Hong-Jun, Peluso, Alina, Durbin, Eric B, Wu, Xiao-Cheng, Stroup, Antoinette, Doherty, Jennifer, Schwartz, Stephen, Wiggins, Charles, Coyle, Linda, Penberthy, Lynne |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202570/ https://www.ncbi.nlm.nih.gov/pubmed/35721398 http://dx.doi.org/10.1093/jamiaopen/ooac049 |
Ejemplares similares
-
Using ensembles and distillation to optimize the deployment of deep learning models for the classification of electronic cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2022) -
Automatic extraction of cancer registry reportable information from free-text pathology reports using multitask convolutional neural networks
por: Alawad, Mohammed, et al.
Publicado: (2019) -
Deep active learning for classifying cancer pathology reports
por: De Angeli, Kevin, et al.
Publicado: (2021) -
A Keyword-Enhanced Approach to Handle Class Imbalance in Clinical
Text Classification
por: Blanchard, Andrew E., et al.
Publicado: (2022) -
Hierarchical attention networks for information extraction from cancer pathology reports
por: Gao, Shang, et al.
Publicado: (2018)