Cargando…
Impact analysis of keyword extraction using contextual word embedding
A document’s keywords provide high-level descriptions of the content that summarize the document’s central themes, concepts, ideas, or arguments. These descriptive phrases make it easier for algorithms to find relevant information quickly and efficiently. It plays a vital role in document processing...
Autores principales: | Khan, Muhammad Qasim, Shahid, Abdul, Uddin, M. Irfan, Roman, Muhammad, Alharbi, Abdullah, Alosaimi, Wael, Almalki, Jameel, Alshahrani, Saeed M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202614/ https://www.ncbi.nlm.nih.gov/pubmed/35721401 http://dx.doi.org/10.7717/peerj-cs.967 |
Ejemplares similares
-
Augmenting Semantic Lexicons Using Word Embeddings and Transfer Learning
por: Alshaabi, Thayer, et al.
Publicado: (2022) -
Using Word Embeddings to Learn a Better Food Ontology
por: Youn, Jason, et al.
Publicado: (2020) -
Clear, easy, plain, and simple as keywords for text simplification
por: Vecchiato, Sara
Publicado: (2022) -
Identification of offensive language in Urdu using semantic and embedding models
por: Hussain, Sajid, et al.
Publicado: (2022) -
Deepfake tweets classification using stacked Bi-LSTM and words embedding
por: Rupapara, Vaibhav, et al.
Publicado: (2021)