Cargando…
Multi-constraints based deep learning model for automated segmentation and diagnosis of coronary artery disease in X-ray angiographic images
BACKGROUND: The detection of coronary artery disease (CAD) from the X-ray coronary angiography is a crucial process which is hindered by various issues such as presence of noise, insufficient contrast of the input images along with the uncertainties caused by the motion due to respiration and variat...
Autores principales: | Algarni, Mona, Al-Rezqi, Abdulkader, Saeed, Faisal, Alsaeedi, Abdullah, Ghabban, Fahad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202622/ https://www.ncbi.nlm.nih.gov/pubmed/35721418 http://dx.doi.org/10.7717/peerj-cs.993 |
Ejemplares similares
-
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
Deep Learning-Based Approach for Emotion Recognition Using Electroencephalography (EEG) Signals Using Bi-Directional Long Short-Term Memory (Bi-LSTM)
por: Algarni, Mona, et al.
Publicado: (2022) -
Automated detection and removal of flat line segments and large amplitude fluctuations in neonatal electroencephalography
por: Tamburro, Gabriella, et al.
Publicado: (2022) -
Detection of COVID-19 using deep learning on x-ray lung images
por: Odeh, AbdAlRahman, et al.
Publicado: (2022) -
iSnoDi-LSGT: identifying snoRNA-disease associations based on local similarity constraints and global topological constraints
por: Zhang, Wenxiang, et al.
Publicado: (2022)