Cargando…
Bilinear pooling in video-QA: empirical challenges and motivational drift from neurological parallels
Bilinear pooling (BLP) refers to a family of operations recently developed for fusing features from different modalities predominantly for visual question answering (VQA) models. Successive BLP techniques have yielded higher performance with lower computational expense, yet at the same time they hav...
Autores principales: | Winterbottom, Thomas, Xiao, Sarah, McLean, Alistair, Al Moubayed, Noura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9202627/ https://www.ncbi.nlm.nih.gov/pubmed/35721409 http://dx.doi.org/10.7717/peerj-cs.974 |
Ejemplares similares
-
Integration of AI and Machine Learning in Radiotherapy QA
por: Chan, Maria F., et al.
Publicado: (2020) -
Beyond the topics: how deep learning can improve the discriminability of probabilistic topic modelling
por: Al Moubayed, Noura, et al.
Publicado: (2020) -
An Overcomplete Approach to Fitting Drift-Diffusion Decision Models to Trial-By-Trial Data
por: Feltgen, Q., et al.
Publicado: (2021) -
Application of Video-to-Video Translation Networks to Computational Fluid Dynamics
por: Kigure, Hiromitsu
Publicado: (2021) -
A survey on detecting healthcare concept drift in AI/ML models from a finance perspective
por: M. S., Abdul Razak, et al.
Publicado: (2023)