Cargando…
Machine learning approaches to the human metabolome in sepsis identify metabolic links with survival
BACKGROUND: Metabolic predictors and potential mediators of survival in sepsis have been incompletely characterized. We examined whether machine learning (ML) tools applied to the human plasma metabolome could consistently identify and prioritize metabolites implicated in sepsis survivorship, and wh...
Autores principales: | Kosyakovsky, Leah B., Somerset, Emily, Rogers, Angela J., Sklar, Michael, Mayers, Jared R., Toma, Augustin, Szekely, Yishay, Soussi, Sabri, Wang, Bo, Fan, Chun-Po S., Baron, Rebecca M., Lawler, Patrick R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203139/ https://www.ncbi.nlm.nih.gov/pubmed/35710638 http://dx.doi.org/10.1186/s40635-022-00445-8 |
Ejemplares similares
-
Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease
por: Kosyakovsky, Jacob, et al.
Publicado: (2021) -
An Evolving Understanding of the Basis and Management of Vascular Complications of COVID-19: Where Do We Go From Here?
por: Szekely, Yishay, et al.
Publicado: (2023) -
Interstitial Keratitis Due to Focal Sepsis
por: Somerset, E. J., et al.
Publicado: (1941) -
A Review of Interleukin-1 in Heart Disease: Where Do We Stand Today?
por: Szekely, Yishay, et al.
Publicado: (2018) -
Metabolomics and machine learning approaches for diagnostic and prognostic biomarkers screening in sepsis
por: She, Han, et al.
Publicado: (2023)