Cargando…
DCE-DForest: A Deep Forest Model for the Prediction of Anticancer Drug Combination Effects
Drug combinations have recently been studied intensively due to their critical role in cancer treatment. Computational prediction of drug synergy has become a popular alternative strategy to experimental methods for anticancer drug synergy predictions. In this paper, a deep learning model called DCE...
Autores principales: | Zhang, Wei, Xue, Ziyun, Li, Zhong, Yin, Huichao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203182/ https://www.ncbi.nlm.nih.gov/pubmed/35720022 http://dx.doi.org/10.1155/2022/8693746 |
Ejemplares similares
-
Insight Into Illness Among Inpatients in a Forensic Service - a Study From Dundrum Hospital as Part of the Dforest Study
por: Murray, Sean, et al.
Publicado: (2022) -
Deep learning radiomic analysis of DCE-MRI combined with clinical characteristics predicts pathological complete response to neoadjuvant chemotherapy in breast cancer
por: Li, Yuting, et al.
Publicado: (2023) -
Understanding DCE /
por: Rosenberry, Ward
Publicado: (1992) -
A hybrid deep forest-based method for predicting synergistic drug combinations
por: Wu, Lianlian, et al.
Publicado: (2023) -
Combination of DCE-MRI and DWI in Predicting the Treatment Effect of Concurrent Chemoradiotherapy in Esophageal Carcinoma
por: Liu, Changmin, et al.
Publicado: (2020)