Cargando…
Lie applicable surfaces and curved flats
We investigate curved flats in Lie sphere geometry. We show that in this setting curved flats are in one-to-one correspondence with pairs of Demoulin families of Lie applicable surfaces related by Darboux transformation.
Autores principales: | Burstall, Francis, Pember, Mason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203414/ https://www.ncbi.nlm.nih.gov/pubmed/35726246 http://dx.doi.org/10.1007/s00229-021-01304-8 |
Ejemplares similares
-
Twistor theory for Riemannian symmetric spaces: with applications to harmonic maps of Riemann surfaces
por: Burstall, Francis E, et al.
Publicado: (1990) -
Light chaotic dynamics in the transformation from curved to flat surfaces
por: Xu, Chenni, et al.
Publicado: (2022) -
Development and Validation of the “Lying Flat” Tendency Scale for the Youth
por: Lu, Huanhua, et al.
Publicado: (2023) -
Flat and curved space-times
por: Ellis, G F R, et al.
Publicado: (2000) -
Flat and curved space-times
por: Ellis, G F R, et al.
Publicado: (1988)