Cargando…

Label-free morphological sub-population cytometry for sensitive phenotypic screening of heterogenous neural disease model cells

Label-free image analysis has several advantages with respect to the development of drug screening platforms. However, the evaluation of drug-responsive cells based exclusively on morphological information is challenging, especially in cases of morphologically heterogeneous cells or a small subset o...

Descripción completa

Detalles Bibliográficos
Autores principales: Imai, Yuta, Iida, Madoka, Kanie, Kei, Katsuno, Masahisa, Kato, Ryuji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203459/
https://www.ncbi.nlm.nih.gov/pubmed/35710681
http://dx.doi.org/10.1038/s41598-022-12250-0
Descripción
Sumario:Label-free image analysis has several advantages with respect to the development of drug screening platforms. However, the evaluation of drug-responsive cells based exclusively on morphological information is challenging, especially in cases of morphologically heterogeneous cells or a small subset of drug-responsive cells. We developed a novel label-free cell sub-population analysis method called “in silico FOCUS (in silico analysis of featured-objects concentrated by anomaly discrimination from unit space)” to enable robust phenotypic screening of morphologically heterogeneous spinal and bulbar muscular atrophy (SBMA) model cells. This method with the anomaly discrimination concept can sensitively evaluate drug-responsive cells as morphologically anomalous cells through in silico cytometric analysis. As this algorithm requires only morphological information of control cells for training, no labeling or drug administration experiments are needed. The responses of SBMA model cells to dihydrotestosterone revealed that in silico FOCUS can identify the characteristics of a small sub-population with drug-responsive phenotypes to facilitate robust drug response profiling. The phenotype classification model confirmed with high accuracy the SBMA-rescuing effect of pioglitazone using morphological information alone. In silico FOCUS enables the evaluation of delicate quality transitions in cells that are difficult to profile experimentally, including primary cells or cells with no known markers.