Cargando…

A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes

Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for...

Descripción completa

Detalles Bibliográficos
Autores principales: Malkowska, Anna, Penfold, Christopher, Bergmann, Sophie, Boroviak, Thorsten E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203550/
https://www.ncbi.nlm.nih.gov/pubmed/35710749
http://dx.doi.org/10.1038/s41467-022-30194-x
_version_ 1784728730054164480
author Malkowska, Anna
Penfold, Christopher
Bergmann, Sophie
Boroviak, Thorsten E.
author_facet Malkowska, Anna
Penfold, Christopher
Bergmann, Sophie
Boroviak, Thorsten E.
author_sort Malkowska, Anna
collection PubMed
description Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols.
format Online
Article
Text
id pubmed-9203550
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-92035502022-06-18 A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes Malkowska, Anna Penfold, Christopher Bergmann, Sophie Boroviak, Thorsten E. Nat Commun Article Mammalian embryogenesis relies on glycolysis and oxidative phosphorylation to balance the generation of biomass with energy production. However, the dynamics of metabolic regulation in the postimplantation embryo in vivo have remained elusive due to the inaccessibility of the implanted conceptus for biochemical studies. To address this issue, we compiled single-cell embryo profiling data in six mammalian species and determined their metabolic dynamics through glycolysis and oxidative phosphorylation associated gene expression. Strikingly, we identify a conserved switch from bivalent respiration in the late blastocyst towards a glycolytic metabolism in early gastrulation stages across species, which is independent of embryo implantation. Extraembryonic lineages followed the dynamics of the embryonic lineage, except visceral endoderm. Finally, we demonstrate that in vitro primate embryo culture substantially impacts metabolic gene regulation by comparison to in vivo samples. Our work reveals a conserved metabolic programme despite different implantation modes and highlights the need to optimise postimplantation embryo culture protocols. Nature Publishing Group UK 2022-06-16 /pmc/articles/PMC9203550/ /pubmed/35710749 http://dx.doi.org/10.1038/s41467-022-30194-x Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Malkowska, Anna
Penfold, Christopher
Bergmann, Sophie
Boroviak, Thorsten E.
A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title_full A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title_fullStr A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title_full_unstemmed A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title_short A hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
title_sort hexa-species transcriptome atlas of mammalian embryogenesis delineates metabolic regulation across three different implantation modes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203550/
https://www.ncbi.nlm.nih.gov/pubmed/35710749
http://dx.doi.org/10.1038/s41467-022-30194-x
work_keys_str_mv AT malkowskaanna ahexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT penfoldchristopher ahexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT bergmannsophie ahexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT boroviakthorstene ahexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT malkowskaanna hexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT penfoldchristopher hexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT bergmannsophie hexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes
AT boroviakthorstene hexaspeciestranscriptomeatlasofmammalianembryogenesisdelineatesmetabolicregulationacrossthreedifferentimplantationmodes