Cargando…
Building reliable radiomic models using image perturbation
Radiomic model reliability is a central premise for its clinical translation. Presently, it is assessed using test–retest or external data, which, unfortunately, is often scarce in reality. Therefore, we aimed to develop a novel image perturbation-based method (IPBM) for the first of its kind toward...
Autores principales: | Teng, Xinzhi, Zhang, Jiang, Zwanenburg, Alex, Sun, Jiachen, Huang, Yuhua, Lam, Saikit, Zhang, Yuanpeng, Li, Bing, Zhou, Ta, Xiao, Haonan, Liu, Chenyang, Li, Wen, Han, Xinyang, Ma, Zongrui, Li, Tian, Cai, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203573/ https://www.ncbi.nlm.nih.gov/pubmed/35710850 http://dx.doi.org/10.1038/s41598-022-14178-x |
Ejemplares similares
-
Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma
por: Teng, Xinzhi, et al.
Publicado: (2022) -
Radiomics-Based Detection of COVID-19 from Chest X-ray Using Interpretable Soft Label-Driven TSK Fuzzy Classifier
por: Zhang, Yuanpeng, et al.
Publicado: (2022) -
Multi-omics to predict acute radiation esophagitis in patients with lung cancer treated with intensity-modulated radiation therapy
por: Zheng, Xiaoli, et al.
Publicado: (2023) -
Lung Subregion Partitioning by Incremental Dose Intervals Improves Omics-Based Prediction for Acute Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients
por: Li, Bing, et al.
Publicado: (2022) -
Comparing effectiveness of image perturbation and test retest imaging in improving radiomic model reliability
por: Zhang, Jiang, et al.
Publicado: (2023)