Cargando…

Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: a kinetic and optimization study

The bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp. BCCS 001 GH...

Descripción completa

Detalles Bibliográficos
Autores principales: Niknezhad, Seyyed Vahid, Kianpour, Sedigheh, Jafarzadeh, Sina, Alishahi, Mohsen, Najafpour Darzi, Ghasem, Morowvat, Mohammad Hossein, Ghasemi, Younes, Shavandi, Amin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203581/
https://www.ncbi.nlm.nih.gov/pubmed/35710936
http://dx.doi.org/10.1038/s41598-022-14417-1
Descripción
Sumario:The bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp. BCCS 001 GH in submerged culture. During kinetics studies, the logistic model and Luedeking–Piret equation are precisely fit with the obtained experimental data. The response surface methodology (RSM)-central composite design (CCD) method is applied to evaluate the effects of four factors (SBM, peptone, Na(2)HPO(4), and Triton X-100) on the concentration of Pantoan in batch culture of Pantoea sp. BCCS 001 GH. The experimental and predicted maximum Pantoan production yields are found 9.9 ± 0.5 and 10.30 g/L, respectively, and the best prediction factor concentrations are achieved at 31.5 g/L SBM, 2.73 g/L peptone, 3 g/L Na(2)HPO(4,) and 0.32 g/L Triton X-100 after 48 h of submerged culture fermentation, at 30 °C. The functional groups and major monosaccharides (glucose and galactose) of a purified Pantoan are described and confirmed by (1)HNMR and FTIR. The produced Pantoan is also characterized by thermogravimetric analysis and the rheological properties of the biopolymer are investigated. The present work guides the design and optimization of the Pantoea sp. BCCS 001 GH culture media, to be fine-tuned and applied to invaluable EPS, which can be applicable in food and biotechnology applications.