Cargando…
Wireless muometric navigation system
While satellite-based global navigation systems have become essential tools in our daily lives, their effectiveness is often hampered by the fact that the signals cannot be accessed in underground, indoor, or underwater environments. Recently, a novel navigation system has been invented to address t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203741/ https://www.ncbi.nlm.nih.gov/pubmed/35710813 http://dx.doi.org/10.1038/s41598-022-13280-4 |
_version_ | 1784728764282830848 |
---|---|
author | Tanaka, Hiroyuki K. M. |
author_facet | Tanaka, Hiroyuki K. M. |
author_sort | Tanaka, Hiroyuki K. M. |
collection | PubMed |
description | While satellite-based global navigation systems have become essential tools in our daily lives, their effectiveness is often hampered by the fact that the signals cannot be accessed in underground, indoor, or underwater environments. Recently, a novel navigation system has been invented to address this issue by utilizing the characteristics of the ubiquitous and highly penetrative cosmic-ray muons. This technique, muometric navigation, does not require active signal generation and enables positioning in the aforementioned environments within a reference coordinate defined by the three-dimensional positions of multiple detectors. In its first phase of development, these reference detectors had to be connected to the receivers via a wired configuration to guarantee precise time synchronization. This work describes more versatile, wireless muometric navigation system (MuWNS), which was designed in conjunction with a cost-effective, crystal-oscillator-based grandmaster clock and a performance evaluation is reported for shallow underground/indoor, deep underground and undersea environments. It was confirmed that MuWNS offers a navigation quality almost equivalent to aboveground GPS-based handheld navigation by determining the distance between the reference frame and the receivers within a precision range between 1 and 10 m. |
format | Online Article Text |
id | pubmed-9203741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-92037412022-06-18 Wireless muometric navigation system Tanaka, Hiroyuki K. M. Sci Rep Article While satellite-based global navigation systems have become essential tools in our daily lives, their effectiveness is often hampered by the fact that the signals cannot be accessed in underground, indoor, or underwater environments. Recently, a novel navigation system has been invented to address this issue by utilizing the characteristics of the ubiquitous and highly penetrative cosmic-ray muons. This technique, muometric navigation, does not require active signal generation and enables positioning in the aforementioned environments within a reference coordinate defined by the three-dimensional positions of multiple detectors. In its first phase of development, these reference detectors had to be connected to the receivers via a wired configuration to guarantee precise time synchronization. This work describes more versatile, wireless muometric navigation system (MuWNS), which was designed in conjunction with a cost-effective, crystal-oscillator-based grandmaster clock and a performance evaluation is reported for shallow underground/indoor, deep underground and undersea environments. It was confirmed that MuWNS offers a navigation quality almost equivalent to aboveground GPS-based handheld navigation by determining the distance between the reference frame and the receivers within a precision range between 1 and 10 m. Nature Publishing Group UK 2022-06-16 /pmc/articles/PMC9203741/ /pubmed/35710813 http://dx.doi.org/10.1038/s41598-022-13280-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Tanaka, Hiroyuki K. M. Wireless muometric navigation system |
title | Wireless muometric navigation system |
title_full | Wireless muometric navigation system |
title_fullStr | Wireless muometric navigation system |
title_full_unstemmed | Wireless muometric navigation system |
title_short | Wireless muometric navigation system |
title_sort | wireless muometric navigation system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203741/ https://www.ncbi.nlm.nih.gov/pubmed/35710813 http://dx.doi.org/10.1038/s41598-022-13280-4 |
work_keys_str_mv | AT tanakahiroyukikm wirelessmuometricnavigationsystem |