Cargando…

RNA Sequencing Unveils Very Small RNAs With Potential Regulatory Functions in Bacteria

RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Diallo, Idrissa, Ho, Jeffrey, Lalaouna, David, Massé, Eric, Provost, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203972/
https://www.ncbi.nlm.nih.gov/pubmed/35720117
http://dx.doi.org/10.3389/fmolb.2022.914991
Descripción
Sumario:RNA sequencing (RNA-seq) is the gold standard for the discovery of small non-coding RNAs. Following a long-standing approach, reads shorter than 16 nucleotides (nt) are removed from the small RNA sequencing libraries or datasets. The serendipitous discovery of an eukaryotic 12 nt-long RNA species capable of modulating the microRNA from which they derive prompted us to challenge this dogma and, by expanding the window of RNA sizes down to 8 nt, to confirm the existence of functional very small RNAs (vsRNAs <16 nt). Here we report the detailed profiling of vsRNAs in Escherichia coli, E. coli-derived outer membrane vesicles (OMVs) and five other bacterial strains (Pseudomonas aeruginosa PA7, P. aeruginosa PAO1, Salmonella enterica serovar Typhimurium 14028S, Legionella pneumophila JR32 Philadelphia-1 and Staphylococcus aureus HG001). vsRNAs of 8–15 nt in length [RNAs (8-15 nt)] were found to be more abundant than RNAs of 16–30 nt in length [RNAs (16–30 nt)]. vsRNA biotypes were distinct and varied within and across bacterial species and accounted for one third of reads identified in the 8–30 nt window. The tRNA-derived fragments (tRFs) have appeared as a major biotype among the vsRNAs, notably Ile-tRF and Ala-tRF, and were selectively loaded in OMVs. tRF-derived vsRNAs appear to be thermodynamically stable with at least 2 G-C basepairs and stem-loop structure. The analyzed tRF-derived vsRNAs are predicted to target several human host mRNAs with diverse functions. Bacterial vsRNAs and OMV-derived vsRNAs could be novel players likely modulating the intricate relationship between pathogens and their hosts.