Cargando…
Prediction of Transcription Factor Binding Sites Using a Combined Deep Learning Approach
In the process of regulating gene expression and evolution, such as DNA replication and mRNA transcription, the binding of transcription factors (TFs) to TF binding sites (TFBS) plays a vital role. Precisely modeling the specificity of genes and searching for TFBS are helpful to explore the mechanis...
Autores principales: | Cao, Linan, Liu, Pei, Chen, Jialong, Deng, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204005/ https://www.ncbi.nlm.nih.gov/pubmed/35719916 http://dx.doi.org/10.3389/fonc.2022.893520 |
Ejemplares similares
-
DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence
por: Deng, Lei, et al.
Publicado: (2021) -
Imputation for transcription factor binding predictions based on deep learning
por: Qin, Qian, et al.
Publicado: (2017) -
A Systems Biology Approach to Transcription Factor Binding Site Prediction
por: Zhou, Xiang, et al.
Publicado: (2010) -
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture
por: Wang, Siguo, et al.
Publicado: (2021) -
Deep Learning for Prediction of Progression and Recurrence in Nonfunctioning Pituitary Macroadenomas: Combination of Clinical and MRI Features
por: Chen, Yan-Jen, et al.
Publicado: (2022)