Cargando…
Predicting Tissue-Specific mRNA and Protein Abundance in Maize: A Machine Learning Approach
Machine learning and modeling approaches have been used to classify protein sequences for a broad set of tasks including predicting protein function, structure, expression, and localization. Some recent studies have successfully predicted whether a given gene is expressed as mRNA or even translated...
Autores principales: | Cho, Kyoung Tak, Sen, Taner Z., Andorf, Carson M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204276/ https://www.ncbi.nlm.nih.gov/pubmed/35719692 http://dx.doi.org/10.3389/frai.2022.830170 |
Ejemplares similares
-
Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize
por: Walsh, Jesse R., et al.
Publicado: (2020) -
Early breast cancer detection and differentiation tool based on tissue impedance characteristics and machine learning
por: Salem, Soumaya Ben, et al.
Publicado: (2023) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Editorial: Machine Learning for Water Resources
por: Mariethoz, Gregoire, et al.
Publicado: (2021) -
Opportunities for human factors in machine learning
por: Baweja, Jessica A., et al.
Publicado: (2023)