Cargando…
A Reparametrized CNN Model to Distinguish Alzheimer's Disease Applying Multiple Morphological Metrics and Deep Semantic Features From Structural MRI
It is of potential clinical value to improve the accuracy of Alzheimer's disease (AD) recognition using structural MRI. We proposed a reparametrized convolutional neural network (Re-CNN) to discriminate AD from NC by applying morphological metrics and deep semantic features. The deep semantic f...
Autores principales: | Chen, Zhenpeng, Mo, Xiao, Chen, Rong, Feng, Pujie, Li, Haiyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204294/ https://www.ncbi.nlm.nih.gov/pubmed/35721011 http://dx.doi.org/10.3389/fnagi.2022.856391 |
Ejemplares similares
-
An Integrated Model Combining Machine Learning and Deep Learning Algorithms for Classification of Rupture Status of IAs
por: Chen, Rong, et al.
Publicado: (2022) -
Reparametrization invariance and the Schrodinger equation
por: Tkach, V I, et al.
Publicado: (1999) -
Reparametrization of the Colle–Salvetti formula
por: Baskerville, Adam L., et al.
Publicado: (2022) -
Utility of quantitative MRI metrics in brain ageing research
por: Filip, Pavel, et al.
Publicado: (2023) -
Reduction and reparametrization of quantum field theories
por: Oehme, Reinhard
Publicado: (1986)