Cargando…
Improving Small Molecule pK( a ) Prediction Using Transfer Learning With Graph Neural Networks
Enumerating protonation states and calculating microstate pK( a ) values of small molecules is an important yet challenging task for lead optimization and molecular modeling. Commercial and non-commercial solutions have notable limitations such as restrictive and expensive licenses, high CPU/GPU hou...
Autores principales: | Mayr, Fritz, Wieder, Marcus, Wieder, Oliver, Langer, Thierry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204323/ https://www.ncbi.nlm.nih.gov/pubmed/35721000 http://dx.doi.org/10.3389/fchem.2022.866585 |
Ejemplares similares
-
Improved Lipophilicity and Aqueous Solubility Prediction with Composite Graph Neural Networks
por: Wieder, Oliver, et al.
Publicado: (2021) -
Multi-instance learning of graph neural networks for aqueous pK(a) prediction
por: Xiong, Jiacheng, et al.
Publicado: (2021) -
Fitting quantum machine learning potentials to experimental free energy data: predicting tautomer ratios in solution
por: Wieder, Marcus, et al.
Publicado: (2021) -
Hierarchical Graph Representation of Pharmacophore Models
por: Arthur, Garon, et al.
Publicado: (2020) -
Prediction of protein pK(a) with representation learning
por: Gokcan, Hatice, et al.
Publicado: (2022)