Cargando…

Representation Learning: Recommendation With Knowledge Graph via Triple-Autoencoder

The last decades have witnessed a vast amount of interest and research in feature representation learning from multiple disciplines, such as biology and bioinformatics. Among all the real-world application scenarios, feature extraction from knowledge graph (KG) for personalized recommendation has ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Geng, Yishuai, Xiao, Xiao, Sun, Xiaobing, Zhu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9204654/
https://www.ncbi.nlm.nih.gov/pubmed/35719384
http://dx.doi.org/10.3389/fgene.2022.891265
Descripción
Sumario:The last decades have witnessed a vast amount of interest and research in feature representation learning from multiple disciplines, such as biology and bioinformatics. Among all the real-world application scenarios, feature extraction from knowledge graph (KG) for personalized recommendation has achieved substantial performance for addressing the problem of information overload. However, the rating matrix of recommendations is usually sparse, which may result in significant performance degradation. The crucial problem is how to extract and extend features from additional side information. To address these issues, we propose a novel feature representation learning method for the recommendation in this paper that extends item features with knowledge graph via triple-autoencoder. More specifically, the comment information between users and items is first encoded as sentiment classification. These features are then applied as the input to the autoencoder for generating the auxiliary information of items. Second, the item-based rating, the side information, and the generated comment representations are incorporated into the semi-autoencoder for reconstructed output. The low-dimensional representations of this extended information are learned with the semi-autoencoder. Finally, the reconstructed output generated by the semi-autoencoder is input into a third autoencoder. A serial connection between the semi-autoencoder and the autoencoder is designed here to learn more abstract and higher-level feature representations for personalized recommendation. Extensive experiments conducted on several real-world datasets validate the effectiveness of the proposed method compared to several state-of-the-art models.